Subscribe free to our newsletters via your
. Space Industry and Business News .

Quicker method paves the way for atomic-level design
by Staff Writers
Lund, Sweden (SPX) Feb 05, 2014

In order to make measurements of the catalyst surface, the sample must first be heated as part of the cleaning process. Photo courtesy Johan Gustafson.

A new X-ray method will enable the development of more efficient catalysts. The method opens up new opportunities to work on atomic level in a number of areas of materials science. Researchers from Lund University are among those behind the new method.

The new X-ray method is used to determine the atomic structure of the surface of different materials. The goal of the present research is to understand how catalysts work at atomic level - both the catalytic converters used for vehicle emissions control in cars and catalysts used in industry.

"Today, almost all developments in catalysts take place through a method of trial and error, but in order to be able to develop better catalysts in the future, deeper understanding of the atomic level is needed", says Dr Johan Gustafson, a researcher at the Department of Physics at Lund University.

A catalyst works by capturing the molecules that are to react on a catalytic surface. The effect of the surface on the molecules is to speed up the desired reaction. The surfaces of different materials capture and affect molecules in different ways. The new X-ray method offers researchers a significantly improved insight into what happens on these surfaces and in their active sites, i.e. the places where the molecules attach and react.

With this knowledge, the material in the catalyst can be optimised to speed up desired reactions and slow down others. The new X-ray method not only provides an instant picture of the situation on a surface, but can also be used to monitor changes over the time that the surface is subjected to different treatments.

"This could be a catalytic reaction that happens on the surface, as in our case. But it would also be possible to monitor how nanostructures grow or how metals oxidise, in conjunction with corrosion, as protection against corrosion or to change the properties of the surface in another way", says Johan Gustafson.

The researchers have developed the new X-ray method by using X-rays of around five times higher energy than usual. This means that a larger amount of data can be measured simultaneously, which in turn drastically reduces the time taken to conduct a full surface structure determination, from ten hours with the traditional method to roughly ten minutes with the new method.

The journal Science now reports on the new X-ray method, which Johan Gustafson has developed with colleagues from Lund University, Chalmers University of Technology in Gothenburg, the DESY research centre in Germany and Hamburg University.


Related Links
Lund University
Space Technology News - Applications and Research

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Faster X-ray technology paves the way for better catalysts
Hamburg, Germany (SPX) Feb 04, 2014
By using a novel X-ray technique, researchers have observed a catalyst surface at work in real time and were able to resolve its atomic structure in detail. The new technique, pioneered at DESY's X-ray light source PETRA III, may pave the way for the design of better catalysts and other materials on the atomic level. It greatly speeds up the determination of atomic surface structures and e ... read more

Oman orders NASAMS air defense system

A Proposal For The Space Debris Society

Storage system for 'big data' dramatically speeds access to information

Raytheon secures first international customer for its F-16 RACR AESA radar

MUOS Satellite Tests Show Extensive Reach In Polar Communications Capability

US Marines Reach Milestone For New General Dynamics-built Aviation CCS

Space squadron optimizes wideband communication constellations

GA-ASI and Northrop Showcase Unmanned Electronic Attack Capabilities

The go-ahead is given for Arianespace's February 6 flight with Ariane 5

SpaceX's next cargo mission to space station is Mar 16

Both payloads for Arianespace's next Ariane 5 flight are mated to the launcher

45th Space Wing Supports NASA Launch

Lockheed Martin Powers On Second GPS 3 Satellite In Production

India to launch three navigation satellites this year

NGC Wins Contract For GPS-Challenged Navigation and Geo-Registration Solution

20th Anniversary of Initial Operational Capability of the GPS Constellation

USAF Receives First B-1 Equipped with Boeing Integrated Battle Station

Launching the Fastest Plane of the Future

Canadian firm buys British, U.S. landing-gear manufacturing operations

USAF Orders Additional Boeing Combat Survivor Evader Locators

Integration brings quantum computer a step closer

New quantum dots herald a new era of electronics operating on a single-atom level

Dutch hi-tech group ASML profits dip despite record sales

2-proton bit controlled by a single copper atom

High resolution, digital bathymetry now available off-the-shelf

Savanna vegetation predictions best done by continent

Chinese scientists pinpoint source of Yangtze's main tributary

China to promote geological information industry

Asian ozone pollution in Hawaii is tied to climate variability

Cooperative SO2 and NOx aerosol formation in haze pollution

Made in China for us: Air pollution tied to exports

Delhi says air 'not as bad' as Beijing after smog scrutiny

The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement