Free Newsletters - Space - Defense - Environment - Energy - Solar - Nuclear
..
. Space Industry and Business News .




TECH SPACE
ORNL-UT researchers invent 'sideways' approach to 2-D hybrid materials
by Staff Writers
Oak Ridge, TN (SPX) Jan 16, 2014


ORNL and UT researchers have invented a method to merge different 2-dimensional materials into a seamless layer. This colorized scanning tunneling microscope image shows a single-atom sheet composed of graphene (seen in blue) combined with hexagonal boron nitride (seen in yellow).

Researchers at the Department of Energy's Oak Ridge National Laboratory and the University of Tennessee, Knoxville have pioneered a new technique for forming a two-dimensional, single-atom sheet of two different materials with a seamless boundary.

The study, published in the journal Science, could enable the use of new types of 2-D hybrid materials in technological applications and fundamental research.

By rethinking a traditional method of growing materials, the researchers combined two compounds -- graphene and boron nitride -- into a single layer only one atom thick. Graphene, which consists of carbon atoms arranged in hexagonal, honeycomb-like rings, has attracted waves of attention because of its high strength and electronic properties.

"People call graphene a wonder material that could revolutionize the landscape of nanotechnology and electronics," ORNL's An-Ping Li said. "Indeed, graphene has a lot of potential, but it has limits. To make use of graphene in applications or devices, we need to integrate graphene with other materials."

One method to combine differing materials into heterostructures is epitaxy, in which one material is grown on top of another such that both have the same crystalline structure. To grow the 2-D materials, the ORNL-UT research team directed the growth process horizontally instead of vertically.

The researchers first grew graphene on a copper foil, etched the graphene to create clean edges, and then grew boron nitride through chemical vapor deposition. Instead of conforming to the structure of the copper base layer as in conventional epitaxy, the boron nitride atoms took on the crystallography of the graphene.

"The graphene piece acted as a seed for the epitaxial growth in two-dimensional space, so that the crystallography of the boron nitride is solely determined by the graphene," UT's Gong Gu said.

Not only did the team's technique combine the two materials, it also produced an atomically sharp boundary, a one-dimensional interface, between the two materials. The ability to carefully control this interface, or "heterojunction," is important from an applied and fundamental perspective, says Gu.

"If we want to harness graphene in an application, we have to make use of the interface properties, since as Nobel laureate Herbert Kroemer once said 'the interface is the device,'" Li said. "By creating this clean, coherent, 1-D interface, our technique provides us with the opportunity to fabricate graphene-based devices for real applications."

The new technique also allows researchers to experimentally investigate the scientifically intriguing graphene-boron nitride boundary for the first time.

"There is a vast body of theoretical literature predicting wonderful physical properties of this peculiar boundary, in absence of any experimental validation so far," said Li, who leads an ORNL effort to study atomic-level structure-transport relationships using the lab's unique four-probe scanning tunneling microscopy facility. "Now we have a platform to explore these properties."

The research team anticipates that its method can be applied to other combinations of 2-D materials, assuming that the different crystalline structures are similar enough to match one another.

The study, titled "Heteroepitaxial Growth of Two-Dimensional Hexagonal Boron Nitride Templated by Graphene Edges," is available online.

Coauthors are the University of Tennessee's Gong Gu, Lei Liu, and Wan Deng; ORNL's Jewook Park, Kendal Clark, Juan Carlos Idrobo, Leonardo Basile and An-Ping Li; and Sandia National Laboratories' David Siegel and Kevin McCarty.

This work was partially supported by the National Science Foundation, the Defense Advanced Research Projects Agency, and the National Secretariat of Higher Education, Science, Technology and Innovation of Ecuador. Work at Sandia was supported by DOE's Office of Science.

Part of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at ORNL by the Scientific User Facilities Division in DOE's Office of Basic Energy Sciences.

.


Related Links
Oak Ridge National Laboratory
National Nanotechnology Initiative
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECH SPACE
Starting Fire With Water
Huntsville AL (SPX) Jan 14, 2014
When firefighters want to extinguish a blaze, they often douse it with water. Astronauts on board the ISS, however, are experimenting with a form of water that does the opposite. Instead of stopping fire, this water helps start it. "We call it 'supercritical water,'" says Mike Hicks of the Glenn Research Center in Ohio. "And it has some interesting properties." Water becomes supercritical ... read more


TECH SPACE
Starting Fire With Water

SimCity coming down from the "cloud"

GPM Completes Spacecraft Alignments

S. Asia takes 71 percent of market for ship breaking

TECH SPACE
Northrop Grumman Supports US Marine Corps Command, Control and Communications Facility for Tactical Air Operations

Rocket Rokot brings 3 Russian military-purpose satellites on orbit

US Air Force selects Raytheon's high-bandwidth satellite terminal for secure, protected communications

Military Communication Improved as 6th Boeing-built Wideband Satellite Enters Service

TECH SPACE
Vega Flight VV03 And Ariane Flight VA218

Competiveness, quality and launcher family evolution are the keywords for Arianespace in 2014 and beyond

Orbital Sciences launches second mission to space station

Cygnus Heads to Space for First Station Resupply Mission

TECH SPACE
Northrop Grumman and Trex Enterprises to Introduce Celestial Navigation to Soldier Precision Targeting Laser Systems

GPS Traffic Maps for Leatherback Turtles Show Hotspots to Prevent Accidental Fishing Deaths

China to upgrade homegrown GPS to improve accuracy

Beidou to cover world by 2020 with 30 satellites

TECH SPACE
Embraer says it met all regional jet delivery targets

Swiss could vote in May on fighter deal

US F-18 fighter crashes off Virginia coast

Lockheed Martin Receives JASSM Contract For Additional Finnish Air Force F-18 Integration

TECH SPACE
Ultra-flexible chip can be wrapped around a hair

Exfoliation method paves way for 2D materials to be used in printable photonics and electronics

Theorists Predict New State of Quantum Matter May Have Big Impact on Electronics

Low-power tunneling transistor for high-performance devices at low voltage

TECH SPACE
Charles River Analytics Develops Satellite Image Processing System for NASA

Earth may be heaver than thought due to invisible belt of dark matter

More BARREL Balloons Take to the Skies

China's HD observation satellite opens its eyes

TECH SPACE
Toxic chemicals found in children's clothes, shoes: Greenpeace

Italy's govt agrees to send in army against mafia dumps

Hong Kong suffers in smog as pollution problems rise

ADB says China and Japan should tackle pollution together




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement