Subscribe free to our newsletters via your
. Space Industry and Business News .

New quantum dots herald a new era of electronics operating on a single-atom level
by Staff Writers
Warsaw, Poland (SPX) Feb 03, 2014

Researchers from the Institute of Experimental Physics at the Faculty of Physics at the University of Warsaw have developed, constructed and tested groundbreaking new quantum dots containing single cobalt ions. Here Wojciech Pacuski, Ph.D., is shown with the molecular beam epitaxy device used to construct the quantum dots. Image courtesy Faculty of Physics, University of Warsaw.

New types of solotronic structures, including the world's first quantum dots containing single cobalt ions, have been created and studied at the Faculty of Physics at the University of Warsaw. The materials and elements used to form these structures allow us forecast new trends in solotronics - a field of experimental electronics and spintronics of the future, based on operations occurring on a single-atom level.

Electronic systems operating on the level of individual atoms would seem to be the natural consequence of efforts to achieve ever-greater miniaturization. Already now, we are able to control the behavior of individual atoms by situating them within special semiconductor structures - this is the method used to form quantum dots that contain single magnetic ions. Until recently, only two variants of such structures were known.

However, physicists from the Institute of Experimental Physics at the Faculty of Physics at the University of Warsaw (FUW) have successfully created and studied two completely new types of the structures. The materials and elements used in the process make it wholly likely that solotronic devices may come into widespread use in the future.

The results, the Warsaw physicists have just published in Nature Communications, pave the way for developing the field of solotronics.

"Quantum dots are semiconductor crystals on a nanometer scale. They are so tiny that the electrons within them exist only in states with specific energies. As such, quantum dots exhibit similar characteristics to atoms, and - just like atoms - they can be stimulated with light to reach higher energy levels. Conversely, this means they emit light as they return to states with lower energy levels," says Prof. Piotr Kossacki (FUW).

The University laboratory creates quantum dots using molecular beam epitaxy. The process involves precision-heating crucibles containing elements placed in a vacuum chamber. Beams of elements are deposited on the sample. By carefully selecting materials and experimental conditions, the atoms assemble into tiny islands, known as quantum dots. The process is similar to how water vapor condenses on a hydrophobic surface.

While the dots settle, a small quantity of other atoms (for example magnetic ones) can be introduced into the vacuum chamber, with some becoming a part of the emerging dots. Once the sample is removed, it can be examined under a microscope to detect quantum dots containing a single magnetic atom at the center.

"Atoms with magnetic properties disrupt the energy levels of electrons in a quantum dot, which affects how they interact with light. As a result, the quantum dot becomes a detector of such an atom's state.

The relationship also works the other way: by changing energy states of electrons in quantum dots, we can affect the respective magnetic atoms," explains Michal Papaj, a student at the UW Faculty of Physics, awarded the Gold Medal in Chemistry during last year's national competition for the best B.Sc. thesis held by the Institute of Physical Chemistry of the Polish Academy of Sciences for his work on quantum dots containing single cobalt ions.

The most powerful magnetic properties are observed in manganese atoms stripped of two electrons (Mn2+). In experiments conducted thus far, the ions have been mounted in quantum dots made of cadmium telluride (CdTe) or indium arsenide (InAs). Using CdTe dots prepared by Dr. Piotr Wojnar at the PAS Institute of Physics, in 2009 Mateusz Goryca from the University of Warsaw demonstrated the first magnetic memory operating on a single magnetic ion.

"It was commonly believed that other magnetic ions, such as cobalt (Co2+), cannot be used in quantum dots. We decided to verify this, and nature gave us a pleasant surprise: the presence of a new magnetic ion turned out not to destroy the properties of the quantum dot," says Jakub Kobak, doctoral student at the University of Warsaw.

Researchers from the University of Warsaw have presented two new systems with single magnetic ions: CdTe quantum dots with a cobalt atom, and cadmium selenide (CdSe) dots with a manganese atom.

As already stated, manganese atoms exhibit the most powerful magnetic properties. Unfortunately, they are caused by the atomic nucleus as well as the electrons, which means that quantum dots containing manganese ions are complex quantum systems. The discovery made by physicists at the University of Warsaw demonstrates that other magnetic elements - such as chromium, iron and nickel - can be used in place of manganese. These elements do not have nuclear spin, which should make quantum dots that contain them easier to manipulate.

In quantum dots where tellurium is replaced by the lighter selenium, researchers observed that the duration for which information was remembered increased by an order of magnitude. This finding suggests that using lighter elements should prolong the time quantum dots containing single magnetic ions store information, perhaps even by several orders of magnitude.

"We have demonstrated that two quantum systems that were believed not to be viable in fact worked very effectively. This opens up a broad field in our search for other, previously rejected combinations of materials for quantum dots and magnetic ions," concludes Dr. Wojciech Pacuski (FUW).

"Designing quantum dots for solotronics"; J. Kobak, T. Smolenski, M. Goryca, M. Papaj, K. Gietka, A. Bogucki, M. Koperski, J.-G. Rousset, J. Suffczynski, E. Janik, M. Nawrocki, A. Golnik, P. Kossacki and W. Pacuski; Nature Communications 5:3191, 27 January 2014; DOI: 10.1038/ncomms4191


Related Links
Faculty of Physics University of Warsaw
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Dutch hi-tech group ASML profits dip despite record sales
The Hague (AFP) Jan 22, 2014
Dutch computer chip maker and global high-tech bellwether ASML on Wednesday posted a drop in profit for 2013, despite record sales in the fourth quarter. Net profit for the year dipped to 1.01 billion euros ($1.37bn), down 11.4 percent from 1.14 billion euros in 2012, but the southern Dutch tech trendsetter predicted a strong showing as the demand for smartphones and tablets continued to boo ... read more

New NASA Laser Technology Reveals How Ice Measures Up

Chameleon of the sea reveals its secrets

Quicker method paves the way for atomic-level design

Microwires as mobile phone sensors

Space squadron optimizes wideband communication constellations

GA-ASI and Northrop Showcase Unmanned Electronic Attack Capabilities

US Navy Accepts General Dynamics-built MUOS Ground Stations

Boeing Transmits Protected Government Signal Through Military Satellite

Both payloads for Arianespace's next Ariane 5 flight are mated to the launcher

45th Space Wing Supports NASA Launch

Athena-Fidus receives its "kick" for Arianespace's upcoming Ariane 5 launch

ILS Proton To Launch Yamal 601

Lockheed Martin Powers On Second GPS 3 Satellite In Production

India to launch three navigation satellites this year

NGC Wins Contract For GPS-Challenged Navigation and Geo-Registration Solution

20th Anniversary of Initial Operational Capability of the GPS Constellation

Canadian firm buys British, U.S. landing-gear manufacturing operations

USAF Orders Additional Boeing Combat Survivor Evader Locators

Launching the Fastest Plane of the Future

Red Arrows pilot killed by 'useless' seat mechanism

Integration brings quantum computer a step closer

New quantum dots herald a new era of electronics operating on a single-atom level

Dutch hi-tech group ASML profits dip despite record sales

2-proton bit controlled by a single copper atom

Chinese scientists pinpoint source of Yangtze's main tributary

China to promote geological information industry

High resolution, digital bathymetry now available off-the-shelf

Savanna vegetation predictions best done by continent

Cooperative SO2 and NOx aerosol formation in haze pollution

Made in China for us: Air pollution tied to exports

Delhi says air 'not as bad' as Beijing after smog scrutiny

India's Essar sues Greenpeace for $80 mn for defamation

The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement