Space Industry and Business News  





.
TECH SPACE
New Imaging Technique Provides Rapid, High-Definition Chemistry

IRENI-generated images (right) are 100 times less pixelated than in those from conventional infrared imaging (left). Using multiple beams from a synchrotron provided made the difference, providing enough light to obtain a detailed image of the sample. With this technique, the quality of the chemical images is now similar to that of optical microscopy. Credit: Carol Hirshmugl/Michael Naase.
by Staff Writers
Milwaukee WI (SPX) Mar 23, 2011
With intensity a million times brighter than sunlight, a new synchrotron-based imaging technique offers high-resolution pictures of the molecular composition of tissues with unprecedented speed and quality. Carol Hirschmugl, a physicist at the University of Wisconsin-Milwaukee (UWM), led a team of researchers from UWM, the University of Illinois at Urbana-Champaign and University of Illinois at Chicago (UIC) to demonstrate these new capabilities.

Hirschmugl and UWM scientist Michael Nasse have built a facility called "Infrared Environmental Imaging (IRENI)," to perform the technique at the Synchrotron Radiation Center (SRC) at UW-Madison. The new technique employs multiple beams of synchrotron light to illuminate a state-of-the-art camera, instead of just one beam.

IRENI cuts the amount of time needed to image a sample from hours to minutes, while quadrupling the range of the sample size and producing high-resolution images of samples that do not have to be tagged or stained as they would for imaging with an optical microscope.

"Since IRENI reveals the molecular composition of a tissue sample, you can choose to look at the distribution of functional groups, such as proteins, carbohydrates and lipids," says Hirschmugl, "so you concurrently get detailed structure and chemistry."

The technique could have broad applications not only in medicine, but also in pharmaceutical drug analysis, art conservation, forensics, biofuel production, and advanced materials, such as graphene, she says.

Funded by $1 million grant from the National Science Foundation's Major Research Instrumentation Program, the development of the facility has quickly attracted other projects supported by the NSF and the National Institutes of Health. It is published online in Nature Methods.

The work is a collaboration with the labs of Rohit Bhargava, assistant professor of bioengineering at the University of Illinois at Urbana-Champaign and pathologists Dr. Virgilia Macias and Dr. Andre Kajdacsy-Balla at UIC. "It has taken three years to establish IRENI as a national user facility located at the SRC," says Nasse. "It is the only facility of its kind worldwide."

Chemical fingerprints
The unique features of the synchrotron make it a highly versatile light source in spectroscopy. Streams of speeding electrons emit continuous light across the entire electromagnetic spectrum so that researchers can access whatever wavelength is best absorbed for a particular purpose.

Although not visible to the human eye, the mid-infrared range of light used by the team documents the light absorbed at thousands of locations on the sample, forming graphic "fingerprints" of biochemically important molecules.

Using 12 beams of synchrotron light in this range allows researchers to collect thousands of these chemical fingerprints simultaneously, producing an image that is 100 times less-pixelated than in conventional infrared imaging.

"We did not realize until now the improvement in detail and quality that sampling at this pixel size would bring," says Bhargava. "The quality of the chemical images is now quite similar to that of optical microscopy and the approach presents exciting new possibilities."

Testing for future applications
The team tested the technique on breast and prostate tissue samples to determine its capabilities for potential use in diagnostics for cancer and other diseases. The researchers were able to detect features that distinguished the epithelial cells, in which cancers begin, from the stromal cells, which are the type found in deeper tissues, with unprecedented detail.

Separating the two layers of cells is a "basement membrane" which prevents malignant cells from spreading from the epithelial cells into the stromal cells. Early-stage cancers are concentrated in the epithelial cells, but metastasis occurs when the basement membrane is breached. Using a prostate cancer sample, the team had encouraging results in locating spectra of the basement membrane, but more work needs to be done.

"IRENI provides us a new opportunity to study tissues and provides lessons for the development of the next generation of IR imaging instruments," says Michael Walsh, a Carle Foundation Hospital-Beckman Institute post-doctoral fellow at the University of Illinois at Urbana-Champaign and co-author on the paper.

It opens the door for development of synchrotron-based imaging that can monitor cellular processes, from simple metabolism to stem cell specialization.




Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
University of Wisconsin - Milwaukee
Space Technology News - Applications and Research



Tempur-Pedic Mattress Comparison

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News
TECH SPACE
New NIST Testing Device May Help To Seal The Deal For Building Owners
Washington DC (SPX) Mar 21, 2011
Just as a chain is as strong as its weakest link, a building is as secure against the environment as its most degraded joint sealants, about 50 percent of which fail in less than 10 years after installation. The upshot for U.S. homeowners is that moisture damage due to failed sealants is responsible for much of the $65 billion to $80 billion they collectively shell out for house repairs an ... read more

.
Get Our Free Newsletters Via Email
  


TECH SPACE
New Imaging Technique Provides Rapid, High-Definition Chemistry

Researchers Devise Model For Stronger Self-Healing Materials By Adding More Give

Cheap Catalyst Made Easy

Google keeps tight grip on tablet software

TECH SPACE
Raytheon BBN Technologies To Protect Internet Comms For Military Abroad

Gilat Announces New Military Modem For Robust Tactical Satcom-On-The-Move

Advanced Emulation Accelerates Deployment Of Military Network Technologies

Tactical Communications Group Completes Deployment Of Ground Support Systems

TECH SPACE
SES And ILS Announce Launch Of SES-6 On ILS Proton In 2013

LockMary To Launch DigitalGlobe WorldView-3 Earth Imaging Satellite

ORBCOMM And SpaceX Set Plans To Launch Satellites On Next Falcon 9

Arianespace's Success Is Built On Transparency

TECH SPACE
GPS Mundi Releases Points Of Interest Files For Ten More Major Cities

LockMart GPS III Team Completes Key Flight Software Milestone

N. Korea rejects Seoul's plea to stop jamming signals

Rayonier's GIS Strengthens Asset Management Capability

TECH SPACE
Bombardier, COMAC team up to market, sell jetliners

China airlines to challenge EU carbon tax: report

Singapore Airlines to suspend half of Tokyo flights

NVision Scanner Helps Get Aircraft Accessories To Fit Right First Time

TECH SPACE
'Quantum' computers said a step closer

Pruned' Microchips Are Faster, Smaller, More Energy-Efficient

Silicon Spin Transistors Heat Up And Spins Last Longer

3D Printing Method Advances Electrically Small Antenna Design

TECH SPACE
Scanner eyes Earth's coastlines from space

Thirst For Knowledge: NASA Eyes World's Water

NASA IR Satellite Imagery Shows Cyclone Cherono Dwindling

France fines Google 100,000 euros over Street View

TECH SPACE
Race to save oil slicked penguins on remote British island

EPA proposes 1st mercury emissions limits

Russian police search office of outspoken activist

China cleaning up 'jeans capital'


The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement