Free Newsletters - Space - Defense - Environment - Energy - Solar - Nuclear
..
. Space Industry and Business News .




CHIP TECH
New 2D material for next generation high-speed electronics
by Staff Writers
Melbourne, Australia (SPX) Jan 23, 2013


Artist impression of high carrier mobility through layered molybdenum oxide crystal lattice. Credit: Dr Daniel J White, ScienceFX.

The material - made up of layers of crystal known as molybdenum oxides - has unique properties that encourage the free flow of electrons at ultra-high speeds. In a paper published in the January issue of materials science journal Advanced Materials, the researchers explain how they adapted a revolutionary material known as graphene to create a new conductive nano-material.

Graphene was created in 2004 by scientists in the UK and won its inventors a Nobel Prize in 2010. While graphene supports high speed electrons, its physical properties prevent it from being used for high-speed electronics.

The CSIRO's Dr Serge Zhuiykov said the new nano-material was made up of layered sheets - similar to graphite layers that make up a pencil's core.

"Within these layers, electrons are able to zip through at high speeds with minimal scattering," Dr Zhuiykov said.

"The importance of our breakthrough is how quickly and fluently electrons - which conduct electricity - are able to flow through the new material."

RMIT's Professor Kourosh Kalantar-zadeh said the researchers were able to remove "road blocks" that could obstruct the electrons, an essential step for the development of high-speed electronics.

"Instead of scattering when they hit road blocks, as they would in conventional materials, they can simply pass through this new material and get through the structure faster," Professor Kalantar-zadeh said.

"Quite simply, if electrons can pass through a structure quicker, we can build devices that are smaller and transfer data at much higher speeds.

"While more work needs to be done before we can develop actual gadgets using this new 2D nano-material, this breakthrough lays the foundation for a new electronics revolution and we look forward to exploring its potential."

In the paper titled 'Enhanced Charge Carrier Mobility in Two-Dimensional High Dielectric Molybdenum Oxide,' the researchers describe how they used a process known as "exfoliation" to create layers of the material ~11 nm thick.

The material was manipulated to convert it into a semiconductor and nanoscale transistors were then created using molybdenum oxide.

The result was electron mobility values of >1,100 cm2/Vs - exceeding the current industry standard for low dimensional silicon.

The work, with RMIT doctoral researcher Sivacarendran Balendhran as the lead author, was supported by the CSIRO Sensors and Sensor Networks Transformational Capability Platform and the CSIRO Materials Science and Engineering Division.

It was also a result of collaboration between researchers from Monash University, University of California - Los Angeles (UCLA), CSIRO, Massachusetts Institute of Technology (MIT) and RMIT.

.


Related Links
Materials Science and Engineering at CSIRO
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





CHIP TECH
DARPA, Industry Collaborate to Knock Down Microelectronics Barriers
Washington DC (SPX) Jan 21, 2013
The inherent goodness of miniaturizing electronics has been key to a wide array of technology innovations and an important economic driver for several decades. For example, the seemingly endless shrinking of the transistor has allowed the semiconductor industry to place ever more devices on the same amount of silicon. Each time the size shrunk, transistors became faster and used less power, allo ... read more


CHIP TECH
Researchers move Barkhausen Effect forward

Computer breakthrough: Code of life becomes databank

Kim Dotcom apologises for Mega bugs

World's Most Complex 2D Laser Beamsteering Array Demonstrated

CHIP TECH
Insights from the SIA DoD Commercial SATCOM Users' Workshop

Boeing to Upgrade Combat Survivor Evader Locator Radios, Base Stations

NATO member orders Falcon III radios

Lockheed Martin Completes Work on US Navy's Second MUOS Satellite

CHIP TECH
NASA Selects Experimental Commercial Suborbital Flight Payloads

Payload elements come together in Starsem's wrap-up Soyuz mission from Baikonur Cosmodrome for Globalstar

Amazonas 3 in Kourou for Ariane 5 year-opening launch campaign

Suborbital Space Research and Education Conference Scheduled for June 2013

CHIP TECH
Lockheed Martin Awarded Contract to Sustain Ground Station for Global Positioning System

China promotes Beidou technology on transport vehicles

New location system could compete with GPS

Beidou's unique services attractive to Chinese companies

CHIP TECH
Sikorsky, Boeing Partner for Joint Multi-Role Future Vertical Lift Requirements

Airlines turn profit from EU freeze on carbon tax: environmentalists

Brazil signs deal to manufacture 'copters

Sound may protect airliners from birds

CHIP TECH
New 2D material for next generation high-speed electronics

UGA researchers invent new material for warm-white LEDs

Intel profits slide, outlook weak as woes continue

New biochip technology uses tiny whirlpools to corral microbes

CHIP TECH
RapidEye Commits to Data Continuity; Discusses System Health and Life Span

Pleiades 1B captures its first images using e2v sensors

NASA's Interface Region Imaging Spectrograph Mission Satellite Completed

Landsat Senses a Disturbance in the Forest

CHIP TECH
Beijing vows efforts to fight pollution: state media

US Navy to pump oil from ship stuck in Philippines

Mercury treaty adopted in Geneva by 140 countries: UN

Brussels urges quick decision on freeze in pollution credits




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement