Subscribe free to our newsletters via your
. Space Industry and Business News .




CHIP TECH
Neuromorphic Electronic circuits for Building Autonomous Cognitive Systems
by Staff Writers
Bielefeld, Germany (SPX) May 21, 2014


Junior Professor Dr. Elisabetta Chicca works on the development of artificial nervous systems. Image courtesy CITEC and Bielefeld University.

Which circuits and chips are suitable for building artificial brains using the least possible amount of power? This is the question that Junior Professor Dr. Elisabetta Chicca from the Center of Excellence Cognitive Interaction Technology (CITEC) has been investigating in collaboration with colleagues from Italy and Switzerland.

A surprising finding: Constructions that use not only digital but also analog compact and imprecise circuits are more suitable for building artificial nervous systems, rather than arrangements with only digital or precise but power-demanding analog electronic circuits. The study will be published in the scientific journal 'Proceedings of the IEEE'. A preview was published online on Thursday, 1 March 2014.

Elisabetta Elisabetta Chicca is the head of the research group 'Neuromorphic Behaving Systems'. One of the aims of her work is to make robots and other technical systems as autonomous and capable of learning as possible. The artificial brains that she and her team are developing are modelled on the biological nervous systems of humans and animals.

"Environmental stimuli are processed in the biological nervous systems of humans and animals in a totally different way to modern computers", says Chicca. 'Biological nervous systems organise themselves; they adapt and learn. In doing so, they require a relatively small amount of energy in comparison with computers and allow for complex skills such as decision-making, the recognition of associations and of patterns.'

The neuroinformatics researcher is trying to utilise biological principles to build artificial nervous systems. Dr. Chicca and her colleagues have been investigating which type of circuits can simulate synapses electronically. Synapses serve as the 'bridges' that transmit signals between nerve cells.

Stimuli are communicated through them and they can also save information. Furthermore, the research team have analysed which type of circuit can imitate the so-called plasticity of the biological nerves. Plasticity describes the ability of nerve cells, synapses and cerebral areas to adapt their characteristics according to use. In the brains of athletes, for example, certain cerebral areas are more strongly connected than in non-athletes.

The four researchers also offer solutions for the control of artificial nervous systems. They present software on the basis of which programmes can be written that can control the circuits and chips of an 'electronic brain'.

For her study, Elisabetta Chicca collaborated with her colleagues Chiara Bartolozzi PhD (Istituto Italiano di Tecnologia/ Italian Institute of Technology - IIT), Professor Dr. Giacomo Indiveri and Fabio Stefanini PhD (both at the Institute of Neuroinformatics, INI, in Zurich and the ETH Zurich).

Elisabetta Chicca, Fabio Stefanini, Chiara Bartolozzi, Giacomo Indiveri: Neuromorphic Electronic circuits for Building Autonomous Cognitive Systems. Proceedings of the IEEE.

.


Related Links
Bielefeld University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





CHIP TECH
Merger planned of electronic component providers
Plainview, N.Y. (UPI) May 20, 2013
A merger is in the works for U.S. and British companies providing components and test equipment for aerospace, defense, electronics and other industries. Aeroflex Holding Corp., headquartered in New York State, said that Cobham plc will acquire its stock at the price of $10.50 per share in cash for a total transaction value of about $1.46 billion. Cobham will also assume Aeroflex ... read more


CHIP TECH
MIPT Experts Reveal the Secret of Radiation Vulnerability

Russian space agency to create equipment for monitoring space debris

Spiders spin possible solution to 'sticky' problems

Is there really cash in your company's trash?

CHIP TECH
The U.S. Navy has contracted Harris Corporation for next-gen radios

Communications upgrade for B-52 bombers

Harris to provide IT service and support for homeland security

Malaysia, Inmarsat to release satellite data on MH370

CHIP TECH
Halting Russian rocket engine deliveries may cost US $5 billion

India To Launch PSLV On Commercial Mission

Third-stage engine glitch causes Proton-M accident

Russia's Roscosmos plans to launch two more Protons this year

CHIP TECH
Russian space agency set to resume Glonass talks with US

Payload preparations in full swing for Ariane 5 launch of Galileo navsat

Sixth Boeing GPS IIF Spacecraft Reaches Orbit, Sends First Signals

British MoD works on 'quantum compass' technology to replace GPS

CHIP TECH
A high-efficiency aerothermoelastic analysis method

Infor, BAE Systems strike deal on software

Thales to produce A400M flight simulator for Britain

Real-time flight tracking possible, not expensive: Airbus official

CHIP TECH
Neuromorphic Electronic circuits for Building Autonomous Cognitive Systems

Merger planned of electronic component providers

New analysis eliminates a potential speed bump in quantum computing

Magnetic Compass Orientation in Birds Builds Case for Bio-Inspired Sensors

CHIP TECH
MMS Narrated Orbit Viz: Unlocking The Secrets of Magnetic Reconnection

New Japan satellite to survey disasters, rain forests

Earth Science Applications Travelogue: Maury Estes

GOES-R Propulsion and System Modules Delivered

CHIP TECH
Sweden to sue EU for delay on hormone disrupting chemicals

Dangerous nitrogen pollution could be halved

Study lists dangerous chemicals linked to breast cancer

Study strengthens link between neonicotinoids and collapse of honey bee colonies




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.