. Space Industry and Business News .

NIST reveals switching mechanism in promising computer memory device
by Staff Writers
Washington DC (SPX) Feb 29, 2012

When two electrodes (top and bottom layers) whose magnetic orientation is the same (indicated by arrows) are separated by thin layers of copper (orange) and tantalum oxide (blue), a filament of copper forms through the oxide when there is a potential difference of 1 to 1.5 volts across the electrodes. When the filament forms, current can flow easily between the two electrodes. The findings help solve the mystery of why the layered structure can form electronic switches that maintain their on/off state when the power is off. Credit: NIST.

Sometimes knowing that a new technology works is not enough. You also must know why it works to get marketplace acceptance.

New information from the National Institute of Standards and Technology (NIST) about how layered switching devices for novel computer memory systems work, for example, may now allow these structures to come to market sooner, helping bring about faster, lower-powered computers.

Switches based on transition-metal oxides have great potential as memory devices that retain their information even when the power is turned off.

One type is made by stacking four different materials: a layer of copper and one of a metal oxide sandwiched between two metal layers that act as electrodes. Such systems can act as an on/off switch when a voltage is applied between the electrodes, but just why they behave as they do is a matter of debate.

Types of nonvolatile memory already exist-thumb drives make use of it-but they do not yet perform well enough to function as the working memory of a computer's central processor. If metal oxides can be perfected for this use, they could enable computers that boot up in seconds and use far less energy.

To study the switching mechanism, the NIST research team built its own version, but with a twist: They used ferromagnetic metals for the electrodes instead of the nonmagnetic metals typically used. They found that when an electric field is applied between the ferromagnetic electrodes, it causes the formation of tiny copper filaments that stretch through the metal-oxide layer.

The filaments, about 16 nm long, are created or annihilated depending on the direction of the applied voltage through the electrodes, making or breaking the switch connection.

"The presence of such filaments is the only explanation that makes any sense as to why our structures make such good switches," says Curt Richter of NIST's Semiconductor Electronics Division.

One key to the team's discovery was their use of the physics of "spin"-a quantum property of electrons that has two possible values, either up or down. From the top electrode, the team sent a current made of electrons that had a polarized spin state, and they found that their spin state had not changed by the time the electrons reached the bottom.

"Only if a filament made of high-quality copper formed would the spins maintain their state," Richter says. "This finding was an end in itself, but it also suggests the layered structure could have applications in 'spintronics' where electron spin is used to carry and process information."

H.-J. Jang, O.A. Kirillov, O.D. Jurchescu and C.A. Richter. Spin transport in memristive devices. Applied Physics Letters 100, 043510 (2012). DOI:10.1063/1.3679114, published online 26 January 2012.

Related Links
National Institute of Standards and Technology (NIST)
Space Technology News - Applications and Research

Get Our Free Newsletters Via Email
Buy Advertising Editorial Enquiries


. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Paving the way to Canada's next big industry
Vancouver BC (SPX) Feb 24, 2012
We are on the cusp of a new information revolution - a quantum leap in technology - and the Institute for Quantum Computing (IQC) at the University of Waterloo is leading the way. With the world's largest concentration of researchers working to harness the forces of quantum mechanics, the institute stands to transform computing, communications and other technologies. "We are learning ... read more

IBM takes giant step to faster, quantum computers

Tech giants get lecture on perils of gadget worship

NIST reveals switching mechanism in promising computer memory device

A Rainbow for the Palm of Your Hand

Raytheon's US Air Force Satellite Terminal Achieves Two Critical Milestones

Northrop Grumman Airborne Network Demonstrates Tactical Potential at Army Integration Exercise

Lockheed Martin Delivers Second AEHF Satellite To U.S. Air Force For Upcoming Launch

United Launch Alliance Atlas V Launches Mobile User Objective System-1 Mission

Ariane 5 readied for dual-satellite launch fpr Asia-Pacific telco

Aiming For An Open Window To Launch Into Space

Sea Launch on Track to Loft Intelsat 19

NuSTAR Mated to its Rocket

Galileo on the ground reaches some of Earth's loneliest places

China launches 11th satellite for independent navigation system

Chinese province school buses to have GPS

NASA Pinning Down "Here" Better Than Ever

ISRO bets on satellite navigation for aviation services

Boeing to sell ten 777s to China Southern

Aircraft of the future could capture and re-use some of their own

Solar Impulse completes 72 hour simulated flight

Solving a Spintronic Mystery

Transforming computers of the future with optical interconnects

Penn Researchers Build First Physical "Metatronic" Circuit

Single-atom transistor is end of Moore's Law; may be beginning of quantum computing

Facility for Climate and Environmental Monitoring from Space

Google Street View to launch in Botswana

NASA Map Sees Earth's Trees In A New Light

NASA Satellite Finds Earth's Clouds are Getting Lower

China orders more accurate air-quality measure

EU takes France to court over nitrates water pollution

China accuses US firm over child lead poisoning

Gases drawn into smog particles stay there

Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement