Subscribe to our free daily newsletters
  Space Industry and Business News  




Subscribe to our free daily newsletters



Long-Lasting Paper Documents

The part of the research undertaken by the UPV/EHU focuses on the analysis of the paper material, i.e. on the samples from different periods and locations, from papyri to ancient maps, official papers, newspapers from the end of the XVIII century, painted paper, and so on.
by Staff Writers
Leioa, Spain (SPX) Apr 03, 2007
Although there be great historical, artistic or archaeological interest in preserving them, paper documents have a limited life. Prolonging this life is the goal of the European Papertech project.

Taking part in the consortium carrying out the project, besides laboratories from Italy, France, Portugal, Morocco, Jordan and Egypt, is the University of the Basque Country (UPV/EHU) through the multidisciplinary Consolidated Group made up of the Environmental Analytic Chemistry Group of the Science and Technology Faculty and the Restoration team of old documents at the Fine Art Faculty.

The project has three basic goals. The first is the diagnosis of the state of conservation of the old paper documents of archaeological, historical and artistic value. The second is conservation using classical methods analysing, above all, biological-type degradation processes that occur on cellulose media. The final goal is to test a new technology to reconstruct what has been lost from the cellulose-based paper medium.

When paper degrades due to chemical action it is basically because of oxidation of the cellulose of which the paper is composed. This reaction throws up a series of functional groups on which the new technology can act. As a result, a new polymeric structure amongst these degraded functional groups is formed and a series of materials that are introduced into the paper. This occurs in such a way that it forms a second coating with very similar properties to the original cellulose, but more stable. It is like new skin covering a wound.

From papyri to more modern papers

The part of the research undertaken by the UPV/EHU focuses on the analysis of the paper material, i.e. on the samples from different periods and locations, from papyri to ancient maps, official papers, newspapers from the end of the XVIII century, painted paper, and so on.

They have perfected methods for characterising these papers and what is printed/written on them. Moreover, they have been able to define and measure the processes of degradation suffered by the paper material. Currently, they are analysing to see if the new processes of conservation are really effective or not.

To carry out the analysis, the UPV/EHU researchers do no touch the samples. They employ a series of non-destructive techniques that enable analyses to be carried out without damaging the samples. The process is always similar, independently of the nature of the sample; the samples pass through the same equipment.

Three kinds of equipment
The first is the Raman portable spectrometer with a microprobe and which is equipped with a micro-videocamera to focus the laser beam on what is to be analysed, being capable of resolving to 10 micras and obtaining the corresponding spectrum. The idea is to ascertain the molecular form of the various, fundamentally inorganic compounds, in the sample of paper.

Molecular-level information is obtained with this apparatus, but with X-Ray microfluorescence the aim is to obtain an analysis of the elements in order to identify the composition of the products of the medium being analysed, thus differentiating between the original components and those extra ones that have come in to the system through some activity caused by external contamination.

Finally, an optical microscope is fitted to a micro-FTIR, in order to "see" the molecular shapes of the organic compounds. Fundamentally, the degradation suffered by the cellulose medium is verified and the nature of the aglutinants used in the writing inks or the different pigments to colour the work are analysed. Obtaining the infrared sample completes the information obtained by the other two techniques.

Once the complete information from the three techniques is obtained, the results are interpreted. To date, new methodologies on how to treat these delicate materials have been proposed. At the same time, they have made advances in the identification of the aglutinants used in inks and pigments - no easy task, by any means.

We can say that the great advantage with respect to other older methods is that the damage to the sample is non-existent or minimal. Given that the UPV/EHU researchers use the infrared spectroscopic technique, which is highly sensitive with less than 0.2 milligrams of sample thickness, they can ascertain the family of aglutinants used. Knowing precisely the aglutinant used 600 years has been practically impossible until now.

Working at this microscopic scale enables identification of materials that perhaps might never have been imagined as degradation products. The problem is usually one of interpreting how these materials came to be in or on the original material. This work is undertaken applying a thorough knowledge of the impact produced by the environment or by micro-organisms and by the chemical reactivity through the use of suitable programmes of chemical balance simulation in heterogeneous phases.

G. Arana, J.M. Madariaga, A. de Diego, K. Castro, L.A. Fernandez, M.A. Olazabal, O. Zuloaga, N. Etxebarria, A. Usobiaga, A. Sarmiento and M.D. Rodriguez-Laso.

Related Links
All about the technology of space and more
Space Technology News - Applications and Research



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


New Metal Crystals Formed On A Cotton Assembly Line
Chicago IL (SPX) Mar 28, 2007
Appropriating cellulose fibers from cotton and crystallizing them, scientists at Pacific Northwest National Laboratory have grown never-before-seen configurations of metal crystals that show promise as components in biosensors, biological imaging, drug delivery and catalytic converters.







  • All Of Russia Will Have Internet And Phone Access
  • Wildblue High-Speed Internet Via Satellite Triples Capacity With New Satellite
  • Publish, Perish Attitudes Make Profs Balk At Online Publication
  • World Getting Ready To Change The Light Bulb

  • Two New Payloads For Ariane 5
  • Proton-M Carrier With Canadian Satellite To Be Launched April 10
  • South Korea Plans To Launch First Rocket In 2008
  • ISRO To Launch Foreign Satellite As Primary Payload First Time

  • NASA Seeks New Research Proposals
  • Germans Urged To Give Foreign Travel A Rest To Curb Global Warming
  • Raytheon Team Proposes Single International Standard In ADS-B Pursuit
  • NASA Signs Defense Department Agreement

  • Raytheon to Pursue US Air Force Network and Space Operations And Maintenance Contract
  • Boeing Helps US Air Force FAB-T Program Win Key Acquisition Award
  • Raytheon Completes Testing Of Navy Multiband Terminal Satellite Communications System
  • Northrop Grumman Adds Boeing To Its Integrated Air And Missile Defense Battle Command System Team

  • Long-Lasting Paper Documents
  • New Homes Rise From Rubbish
  • ESA Open-Source Software Supports TerraSAR-X
  • New KVH TracVision M5 And M7 Deliver Stronger Signals For Superior Onboard Satellite TV

  • William Shernit Joins Intelsat General As President and CEO
  • Northrop Grumman Appoints Catherine Kuenzel And Jill Kale IT Sector Vice Presidents
  • SMA Wins Space Adventures Account
  • Fifth Annual Space Career Fair Set For April 12

  • ESA Signs Arrangement With New Zealand On Tracking Station
  • DMCii To Launch New Higher-Resolution Satellite Imaging Service
  • First Greenhouse Gas Animations Produced Using Envisat SCIAMACHY Data
  • Take A Closer Look At Our Planet At The Palais De La Decouverte In Paris

  • Glonass System To Be Launched By Year-End
  • Haicom Is Proudly Announce The New HI-601VT GPS GSM Real-Time Tracker
  • Comtech To Supply Movement Tracking Systems To US Army
  • Russia Allocates $380 Million For Glonass In 2007

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement