Free Newsletters - Space News - Defense Alert - Environment Report - Energy Monitor
. Space Industry and Business News .




TECH SPACE
In metallic glasses, researchers find a few new atomic structures
by Staff Writers
Madison WI (SPX) May 22, 2012


Researchers widely believe that atoms in metallic glasses are arranged only as pentagons in an order known as five-fold rotational symmetry.

Drawing on powerful computational tools and a state-of-the-art scanning transmission electron microscope, a team of University of Wisconsin-Madison and Iowa State University materials science and engineering researchers has discovered a new nanometer-scale atomic structure in solid metallic materials known as metallic glasses.

Published in the journal Physical Review Letters, the findings fill a gap in researchers' understanding of this atomic structure. This understanding ultimately could help manufacturers fine-tune such properties of metallic glasses as ductility, the ability to change shape under force without breaking, and formability, the ability to form a glass without crystalizing.

Glasses include all solid materials that have a non-crystalline atomic structure: They lack a regular geometric arrangement of atoms over long distances.

"The fundamental nature of a glass structure is that the organization of the atoms is disordered-jumbled up like differently sized marbles in a jar, rather than eggs in an egg carton," says Paul Voyles, a UW-Madison associate professor of materials science and engineering and principal investigator on the research.

Researchers widely believe that atoms in metallic glasses are arranged only as pentagons in an order known as five-fold rotational symmetry. However, in studies of a zirconium-copper-aluminum metallic glass, Voyles' team found there are clusters of squares and hexagons-in addition to clusters of pentagons, some of which form chains-all located within the space of just a few nanometers.

"One or two nanometers is a group of about 50 atoms-and it's how those 50 atoms are arranged with respect to one another that's the new and interesting part," he says.

Measuring the atomic structure of glass at this scale has been extremely difficult. Researchers know that, at a few tenths of a nanometer, atoms in metallic glasses have the same distances between them as they do in crystals. They also know that at long distances-hundreds of nanometers-there's no order left.

"But what happens in between, at this 'magic' length of one to three nanometers, is very hard to measure experimentally and is essentially unexplored in experiments and simulations," says Voyles.

An expert in electron microscopy, Voyles used a powerful, state-of-the-art scanning transmission electron microscope at UW-Madison as his window into this nanometer-scale atomic structure. The microscope can generate an electron probe beam two nanometers in diameter-the ideal size for examining atoms on a length scale of one to three nanometers.

"And that, fundamentally, is what makes the experiments work and gives us access to this information that's otherwise very difficult to obtain," he says. "We can match our experimental probe in size right to the size of what we want to measure."

Voyles and his team coupled the experimental data from the microscope with state-of-the-art computational methods to conduct simulations that accurately reflect the experiments. "It's the combination of those two things that gives us this new insight," he says. "We can look at the results and abstract general principles about rotational symmetry and nanoscale clustering."

There were several clues in the properties of some metallic glasses that these competing geometric structures might exist. Those arise from the interrelationships of structure, processing and properties, says Voyles.

"If we understand how the structure controls, for example, glass-forming ability or the ability to change shape on bending or pulling, and we understand how different elements participate in these different kinds of structures, that gives us a handle on controlling properties by adjusting the composition or adjusting the rate at which the material was cooled or heated to change the structure in some useful way," he says.

One of the unique characteristics of glasses is their ability to transition continuously from a solid to a liquid state. While other materials, when heated, are partly melted and partly solid, glasses as a whole become increasingly malleable.

While manufacturers now apply metallic glasses primarily in electrical transformer cores, their special forming capabilities may enable manufacturers to make very small, intricate parts. "Unlike conventional metallic alloys, metallic glasses can be molded like plastic-so they can be pushed or sucked or blown into very complicated shapes without any loss of material or machining," says Voyles.

Those manufacturing methods hold true even at the micro or nanoscale, so it's possible to make, for example, forests of nanowires or the world's smallest geared motor. "Five or 10 years from now, there may be more commercial applications driven by those kinds of things than there are now," he says.

For Voyles and his team, the next step will be to calculate the properties of the most realistic structural models of metallic glass they have developed to learn how those properties relate to the structure.

Other authors on the Physical Review Letters paper include lead author Jinwoo Hwang, Z.H. Melgarejo and Don Stone of UW-Madison, and Y.E. Kalay, I. Kalay and M.J. Kramer of Iowa State University.

.


Related Links
University of Wisconsin-Madison
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECH SPACE
Freshwater crayfish found to have substance covering teeth astonishingly similar to human enamel
Beer-Sheva, Israel (SPX) May 18, 2012
A team of Israeli and German scientists from Ben-Gurion University of the Negev (BGU) and the Max Planck Institute of Colloids and Interfaces have found an enamel-like layer in the mandibles of freshwater crayfish, according to an article in Nature Communications titled "Enamel-like Apatite Crown Covering Amorphous Mineral in a Crayfish Mandible." Dr. Shmuel Bentov from BGU's Avram and Ste ... read more


TECH SPACE
New 'metamaterial' practical for optical advances

In metallic glasses, researchers find a few new atomic structures

Asia's largest gaming expo opens in Macau

Germany's SAP grabs US cloud firm for $4.3 bn

TECH SPACE
Researchers Improve Fast-Moving Mobile Networks

Second AEHF Military Communications Satellite Launched

Fourth Boeing-built WGS Satellite Accepted by USAF

Raytheon to Continue Supporting Coalition Forces' Information-Sharing Computer Network

TECH SPACE
SpaceX readies new attempt of rocket launch to space lab

Ariane 5's second launch of 2012

SES-5 Satellite Delivered To Baikonur Launch Base

SpaceX scrubs launch to ISS over rocket engine problem

TECH SPACE
Scientists design indoor navigation system for blind

Chinese navigation system to cover Asia-Pacific this year

Northrop Grumman Successfully Demonstrates New Target Location Module

Thousands of Young Adventurers Kept Safe with M2M Connectivity from Eseye

TECH SPACE
China criticises US vote on Taiwan fighter jet sales

Peru to upgrade fast aging air force jets

Military aviation: a new bomber and the fifth generation fighter planes

Russia's military aircraft industry: overview and outlook

TECH SPACE
Full control of plastic transistors

Researchers map path to quantum electronic devices

Fast, low-power, all-optical switch

SK Hynix pulls out of bid for Japan's Elpida

TECH SPACE
Moscow court upholds ban against satellite image distributor

New Carbon-Counting Instrument Leaves the Nest

China launches new remote-sensing satellite

ESA declares end of mission for Envisat

TECH SPACE
Chemical exposure influences rat behavior for generations

Australian tug reaches ship adrift off Barrier Reef

Hungarian red mud plant ordered to solve dust scare

Nanotube 'sponge' has potential in oil spill cleanup




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement