Subscribe free to our newsletters via your
. Space Industry and Business News .

How does hydrogen metallize?
by Staff Writers
Washington DC (SPX) Aug 01, 2013

This image shows the predicted optical absorption of a 1 um of hydrogen in a high pressure diamond anvil cell for different crystal structures at a pressure of 300 GPa (3 million times normal atmosphere-similar to the pressure in the center of the Earth). At these pressures hydrogen no longer forms molecules, but instead forms in sheets, as shown in the figure. Scientists use optical absorption to look for metallization in hydrogen, based on the assumption that metallic hydrogen would be opaque as most metals are. But the team's analysis shows that it may very well actually be transparent. Absorption units on the graph (AU) are in factors of 10, meaning 2 AU lets just 1% of the incident light pass through the structure (quite dark!). The graphite structure is an ideal structure that is not expected to be observed in reality. The proposed high-pressure forms, phase 3 (at low temperatures) and phase 4 (at room temperature), are both predicted to be transparent in the near infrared and optical frequencies of light, although phase 4 is poor metal. The Cmca structure is a similar structure, but is predicted to be a better metal and opaque, and to form at higher pressures. Graph is courtesy of Ronald Cohen. Credit: Courtesy of Ronald Cohen, Carnegie Institution for Science.

Hydrogen is deceptively simple. It has only a single electron per atom, but it powers the sun and forms the majority of the observed universe. As such, it is naturally exposed to the entire range of pressures and temperatures available in the whole cosmos. But researchers are still struggling to understand even basic aspects of its various forms under high-pressure conditions.

Experimental difficulties contribute to the lack of knowledge about hydrogen's forms. The containment of hydrogen at high pressures and the competition between its many similar structures both play a part in the relative lack of knowledge.

At high pressures, hydrogen is predicted to transform to a metal, which means it conducts electricity. One of the prime goals of high pressure research, going back to the 1930s, has been to achieve a metallic state in hydrogen. There have been recent claims of hydrogen becoming metallic at room temperature, but they are controversial.

New work from a team at Carnegie's Geophysical Laboratory makes significant additions to our understanding of this vital element's high-pressure behavior. Their work is published in two papers by Proceedings of the National Academy of Sciences and Physical Review B.

New theoretical calculations from Carnegie's Ronald Cohen, Ivan Naumov and Russell Hemley indicate that under high pressure, hydrogen takes on a series of structures of layered honeycomb-like lattices, similar to graphite. According to their predictions the layers, which are like the carbon sheets that form graphene, make a very poor, transparent metal. As a result, its signature is difficult to detect.

"The difficulty of detection means that the line between metal and non-metal in hydrogen is probably blurrier than we'd previously supposed," Cohen said "Our results will help experimental scientists test for metallic hydrogen using advanced techniques involving the reflectivity of light."


Related Links
Carnegie Institution
Space Technology News - Applications and Research

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Tetrapod Quantum Dots Light the Way to Stronger Polymers
Berkeley CA (SPX) Aug 01, 2013
Fluorescent tetrapod nanocrystals could light the way to the future design of stronger polymer nanocomposites. A team of researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) has developed an advanced opto-mechanical sensing technique based on tetrapod quantum dots that allows precise measurement of the tensile strength of polymer fibers with ... read more

New Ways To Create Gradients For Molecular Interactions

Hardness in depth at nano scales

Lockheed Martin Completes Long-Range Surveillance Radar Demonstration

How does hydrogen metallize?

New Military Communications Satellite Built By Lockheed Martin Launches

US Navy Poised to Launch Lockheed Martin-Built Secure Communications Satellite for Mobile Users

Northrop Grumman Moves New B-2 Satellite Communications Concept to the High Ground

Canada links up on secure U.S. military telecoms network

SpaceX Awarded Launch Reservation Contract for Largest Canadian Space Program

ULA Continues Rapid, Reliable Launch Rate

Launch Vehicles for Achieving Low and High Orbits

The second satellite arrives for Arianespace's upcoming heavy-lift Ariane 5 launch

'Spoofing' attack test takes over ship's GPS navigation at sea

Orbcomm Globaltrak Completes Shipment Of Fuel Monitoring Solution In Afghanistan

Lockheed Martin GPS III Satellite Prototype To Help Cape Canaveral Air Force Station Prep For Launch

Lockheed Martin Delivers Antenna Assemblies For Integration On First GPS III Satellite

100th Jet In Final Production; First F-35 Bound For Luke

S. Korea extends bidding for fighter jets

France confident about delayed Rafale sale to India

US suspends delivery of F-16s to Egypt: Pentagon

Nanotechnology breakthrough is big deal for electronics

Broadband photodetector for polarized light

Intel profits slide as chipmaker repositions

NIST shows how to make a compact frequency comb in minutes

NASA's Van Allen Probes Discover Particle Accelerator in the Heart of Earth's Radiation Belts

Seeing Photosynthesis from Space: NASA Scientists Use Satellites to Measure Plant Health

First high-resolution national carbon map - Panama

NASA Releases Images of Earth Taken by Distant Spacecraft

Pollution blamed for drop in Beijing tourism: state media

Poisoned dumpling trial held in China

Thai firm understating oil slick fallout: Greenpeace

Oil spill hits Thai tourist island

The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement