. Space Industry and Business News .

Hiding Objects With a Terahertz Invisibility Cloak
by Staff Writers
Evanston IL (SPX) Sep 06, 2011

Illustration only.

Researchers at Northwestern University have created a new kind of cloaking material that can render objects invisible in the terahertz range. Though this design can't translate into an invisibility cloak for the visible spectrum, it could have implications in diagnostics, security, and communication.

The cloak, designed by Cheng Sun, assistant professor of mechanical engineering at Northwestern's McCormick School of Engineering and Applied Science, uses microfabricated gradient-index materials to manipulate the reflection and refraction of light.

Sun's research was published in Scientific Reports, a new online, open-source journal that provides rapid publication and high visibility of research for all areas of science.

Humans generally recognize objects through two features: their shape and color. To render an object invisible, one must be able to manipulate light so that it will neither scatter at an object's surface nor be absorbed or reflected by it (the process which gives objects color).

In order to manipulate light in the terahertz frequency, which lies between infrared and microwaves, Sun and his group developed metamaterials: materials that are designed at the atomic level.

Sun's tiny, prism-shaped cloaking structure, less than 10 millimeters long, was created using a technique called electronic transfer microstereolithography, where researchers use a data projector to project an image on a liquid polymer, then use light to transform the liquid layer into a thin solid layer.

Each of the prism's 220 layers has tiny holes that are much smaller than terahertz wavelengths, which means they can vary the refraction index of the light and render invisible anything located beneath a bump on the prism's bottom surface; the light then appears to be reflected by a flat surface.

Sun says the purpose of the cloak is not to hide items but to get a better understanding of how to design materials that can manipulate light propagation.

"This demonstrates that we have the freedom to design materials that can change the refraction index," Sun said. "By doing this we can manipulate light propagation much more effectively."

The terahertz range has been historically ignored because the frequency is too high for electronics. But many organic compounds have a resonant frequency at the terahertz level, which means they could potentially be identified using a terahertz scanner.

Sun's research into terahertz optics could have implications in biomedical research (safer detection of certain kinds of cancers) and security (using terahertz scanners at airports).

Next Sun hopes to use what he's learned through the cloak to create its opposite: a terahertz lens. He has no immediate plans to extend his invisibility cloak to visible frequencies.

"That is still far away," he said. "We're focusing on one frequency range, and such a cloak would have to work across the entire spectrum."

Related Links
Northwestern University
Space Technology News - Applications and Research


Get Our Free Newsletters Via Email
Buy Advertising Editorial Enquiries

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Penn Physicists Develop New Insight Into How Disordered Solids Deform
Philadelphia, PA (SPX) Sep 05, 2011
In solid materials with regular atomic structures, figuring out weak points where the material will break under stress is relatively easy. But for disordered solids, like glass or sand, their disordered nature makes such predictions much more daunting tasks. Now, a collaboration combining a theoretical model with a first-of-its kind experiment has demonstrated a novel method for identifyin ... read more

Hiding Objects With a Terahertz Invisibility Cloak

To Clear Digital Waste in Computers Think Green

NASA Gives Public New Internet Tool to Explore the Solar System

Cornell physicists capture microscopic origins of thinning and thickening fluids

Lockheed Martin AMF JTRS Team Delivers Joint Tactical Radio to AFRL For C-130J And C-5 Integration Risk Reduction

ASC Signal Will Support L-3 Communications with Multi-Band Transportable Communications for a U.S. Government Agency

Lockheed Martin Introduces Virtual Capability That Connects Interpreters with Battlefield Troops

"Network in A Box" Allows Military Vehicles To Be Used For Multiple Missions

Kazakhstan won't ban Russian rocket launches from Baikonur

SwRI selected as payload integrator for three NASA suborbital flight opportunities research providers

Ariane 5's upper payload completes its integration at the Spaceport

Third ATV begins its preparations for launch on Ariane 5

Northrop Grumman Business Unit Astro Aerospace Delivers Antennas to Lockheed Martin for GPS III

Researchers Improving GPS Accuracy In The Third Dimension

ASA Search and Rescue Software Used To Locate Capsized Boat Off Ireland

Software said to improve GPS accuracy

IATA says July air traffic up but warns of gloomy outlook

NASA Collaborates on Cargo Airship Workshop in Alaska

Brazil seeks more aviation sales in Africa

Netherlands sells off aircraft

The quantum tunneling effect leads electron transport in porphyrins

Microscope on the go: Cheap, portable, dual-mode microscope uses holograms, not lenses

Flexible electronics hold promise for consumer applications

New nanoscale parameter by Aalto University resolves dilemmas on silicon property

TerraSAR-X monitors gas storage centre all the way from space

Orbital Wins ICESat-2 Earth Science Satellite Program Contract

Aquarius Makes First Ocean Salt Measurements

Next NASA Earth-Observing Satellite Arrives in California for Launch

Apple's China 'suppliers' under fire for pollution

Philippines to dismantle deadly garbage dump

Greenpeace finds toxic chemicals in branded clothing

Greenpeace Copenhagen gatecrashers get wrists slapped

Memory Foam Mattress Review
Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement