Subscribe to our free daily newsletters
  Space Industry and Business News  

Subscribe to our free daily newsletters

Glory And Taurus Ready For Liftoff

On Space Launch Complex 576-E at Vandenberg Air Force Base in California, the Taurus XL rocket is in its launch configuration. Image credit: NASA/Randy Beaudoin, VAFB.

Ball Aerospace Cloud Cameras Fly Aboard NASA's Glory Mission
Boulder CO - Two cloud cameras built by Ball Aerospace and Technologies Corp. will fly aboard NASA's Glory climate-monitoring mission scheduled to launch Wednesday, Feb. 23, from Vandenberg Air Force Base in California. Ball Aerospace designed and built the semi-custom Glory cloud cameras for NASA's Goddard Space Flight Center using standard CT-633 star tracker electronics and custom optics and software. The cloud cameras are mounted separately but will operate in conjunction with the Aerosol Polarimetry Sensor, which provides data on the properties of black carbon and other types of aerosols as well as clouds in the Earth's atmosphere. The Glory cameras extend technologies first developed by Ball for the successful cloud camera flying onboard the Cloud-Aerosol LIDAR and Infrared Pathfinder Satellite Observations (CALIPSO) mission launched in 2006. Once on orbit, Glory will join CALIPSO as part of NASA's A-train satellite formation of Earth-observation satellites. The three-year Glory mission will contribute to the Intergovernmental Panel on Climate Change Program by studying the causes and consequences of global environmental changes as well as helping to determine how to predict these changes.
by Staff Writers
Vandenberg AFB CA (SPX) Feb 23, 2011
The launch of NASA's Glory spacecraft aboard an Orbital Sciences Taurus XL rocket is scheduled for Wednesday, Feb. 23. Liftoff from Space Launch Complex 576-E at Vandenberg Air Force Base in California is targeted for 2:09:43 a.m. PST (5:09:43 a.m. EST) in the middle of a 48-second launch window.

At the prelaunch news conference, NASA launch Director Omar Baez pronounced the spacecraft and rocket, "clean, green and ready to go," as Launch Weather Officer 1st Lt. Benjamin J. Wauer gave a 90 percent "go" for weather, with only a slight possibility of clouds in the area causing a problem at liftoff time.

John Brunschwyler, Taurus program director for Orbital Science Corporation, manufacturer of the rocket, discussed the rigorous testing and changes to the launch vehicle in preparing it to carry the Glory spacecraft into orbit.

Glory Program Executive Joy Bretthauer summed up the purpose of the mission by saying, "The Glory mission will provide the highly accurate aerosol and solar irradiance measurements that are vital to providing planet models and accurately predicting Earth's future climate."

Data from the Glory mission will allow scientists to better understand how the sun and tiny atmospheric particles called aerosols affect Earth's climate. Both aerosols and solar energy influence the planet's energy budget - the amount of energy entering and exiting Earth's atmosphere. An accurate measurement of these impacts is important in order to anticipate future changes to our climate and how they may affect human life.

Project management for Glory is the responsibility of NASA's Goddard Space Flight Center in Greenbelt, Md. The launch management for the mission is the responsibility of NASA's Launch Services Program at the Kennedy Space Center in Florida. Orbital Sciences Corp. of Dulles, Va., is the launch service provider to Kennedy of the four-stage Taurus XL rocket and is also builder of the Glory satellite for Goddard.

related report
Glory Promises New View of Perplexing Particles
Climatologists have known for decades that airborne particles called aerosols can have a powerful impact on the climate. However, pinpointing the magnitude of the effect has proven challenging because of difficulties associated with measuring the particles on a global scale.

Soon a new NASA satellite - Glory - should help scientists collect the data needed to provide firmer answers about the important particles. In California, engineers and technicians at Vandenberg Air Force Base are currently prepping Glory for a Feb. 23 launch.

Aerosols, or the gases that lead to their formation, can come from vehicle tailpipes and desert winds, from sea spray and fires, volcanic eruptions and factories. Even lush forests, soils, or communities of plankton in the ocean can be sources of certain types of aerosols.

The ubiquitous particles drift in Earth's atmosphere, from the stratosphere to the surface, and range in size from a few nanometers, less than the width of the smallest viruses, to several tens of micrometers, about the diameter of human hair.

The particles can directly influence climate by reflecting or absorbing the sun's radiation. In broad terms, this means bright-colored or translucent aerosols, such as sulfates and sea salt aerosols, tend to reflect radiation back towards space and cause cooling. In contrast, darker aerosols, such as black carbon and other types of carbonaceous particles, can absorb significant amounts of light and contribute to atmospheric warming.

Research to date suggests that the cooling from sulfates and other reflective aerosols overwhelms the warming effect of black carbon and other absorbing aerosols. Indeed, the best climate models available show that aerosol particles have had a cooling effect that has counteracted about half of the warming caused by the build-up of greenhouse gases since the 1880s.

"However, the models are far from perfect," said Glory Project Scientist Michael Mishchenko, a senior scientist at the Goddard Institute for Space Studies (GISS). "The range of uncertainty associated with the climate impact of aerosols is three or four times that of greenhouse gases," he said.

In comparison to greenhouse gases, aerosols are short-lived, and dynamic - making the particles much harder to measure than long-lived and stable carbon dioxide. Aerosols usually remain suspended in the atmosphere for just a handful of days. Complicating matters, the particles can clump together to form hybrids that are difficult to distinguish.

In addition to scattering and absorbing light, aerosols can also modify clouds. They serve as the seeds of clouds, and can also affect cloud brightness and reflectivity, how long clouds last, and how much they precipitate. Reflective aerosols, like sulfates, for example, tend to brighten clouds and make them last longer, whereas black carbon from soot generally has the opposite effect.

Still, much remains unknown about aerosols and clouds. How do aerosols other than sulfates and black carbon affect clouds? How do aerosol impacts differ in warm and cold environments? Can infusions of aerosols near clouds spark self-reinforcing feedback cycles capable of affecting the climate?

The climate impact of clouds remains one of the largest uncertainties in climate science because of such unanswered questions. Some models suggest a mere 5 percent increase in cloud reflectivity could compensate for the entire increase in greenhouse gases from the modern industrial era, while others produce quite different outcomes.

Such unresolved issues prompted the Intergovernmental Panel on Climate Change (IPCC) to list the level of scientific understanding about aerosols as "low" in its last major report. Of the 25 climate models included by the IPCC in the Fourth Assessment Report, only a handful considered the scattering or absorbing effects of aerosol types other than sulfates.

"And less than a third of the models included aerosol impacts on clouds, even in a limited way, and those that did only considered sulfates," said Mian Chin, a physical scientist at NASA's Goddard Space Flight Center who specializes in modeling aerosols.

Glory, which contains an innovative aerosol-sensing instrument called the Aerosol Polarimetry Sensor (APS), aims to change this. By more accurately identifying a broad suite of aerosol types - such as salt, mineral dust and smoke - the instrument should help climatologists fill in key gaps in climate models.

While other NASA instruments - including ground, aircraft, and satellite-based instruments - have studied aerosols in the past, APS is NASA's first satellite-based instrument capable of measuring the polarization, the orientation of light-wave vibrations.

Raw sunlight, explained Mishchenko, is unpolarized. This means the waves oscillate in an unpredictable, random fashion as they move through space - much like a rope would wiggle about if it had two people flapping its ends up and down in no particular pattern.

When light waves pass through certain types of filters called polarizers the waves are forced into a more ordered form. Imagine that wobbling rope trying to pass throw a narrow slit in a fence: only the waves vibrating at a certain angle could make it through. The result is polarized light, or light for which the waves only oscillate at specific angles. The surface of glass, sunglasses, even clouds of aerosol particles can polarize light.

APS's ability to measure the polarization of light scattered by aerosols and clouds is the key strength of the instrument. Other NASA satellite instruments have measured aerosols, but such instruments have typically done so by looking at the intensity of light - the amplitude of the light waves - not their polarization.

Yet, ground and aircraft-based studies, particularly those conducted with an aircraft instrument called the Research Scanning Polarimeter, which is quite similar to APS, show that polarized light contains the most information about aerosol features. "Earlier instruments can approximate the abundance of aerosol in general terms, but they leave much to be desired if you're trying to sort out the shape and composition of the particles," said APS Instrument Scientist Brian Cairns, also of GISS.

Large, spherical particles - sea salt, for example - leave a very different imprint on light in comparison to smaller and more irregularly-shaped particles such as black carbon. As a result, much like forensic scientists might study the details of blood droplets at a crime scene to reconstruct what happened, climatologists using Glory data will look to the polarization state of scattered light to work backwards and deduce the type of aerosol that must have scattered it.

Glory will not be the first Earth-observing satellite instrument to study polarization. French instruments that launched in 1996 and 2002 have as well, but the APS promises to be far more accurate and will look at the same particles from many more angles.

Nonetheless, interpreting Glory's APS data will be an extremely complex task. The mission will provide such a vast amount of new polarization data about aerosols that, in order to make sense of it, scientists will first have to validate APS science products with ground-based sensors scattered around the globe. Likewise, they will have to adapt and update mathematical techniques developed for an aircraft instrument to ensure they work well in a space environment.

All of this will take some time to refine and perfect. Mishchenko's team expects to release preliminary results as soon as possible after Glory launches, but he also expects to release improved and enhanced versions of Glory's APS data products over time.

A great deal of work lies ahead of Glory's science team and the aerosol science community more broadly, but the mission has the potential to produce profound advancements in understanding the perplexing particles. "Glory has the potential to offer a critical view of aerosols that we have never had from space before," said Glory's Deputy Project Scientist Ellsworth Welton.

Share This Article With Planet Earth DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook

Related Links
Glory at NASA
Ball Aerospace and Technologies
Earth Observation News - Suppiliers, Technology and Application

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

GIS Development Announces Latin American Geospatial Forum
Rio de Janeiro, Brazil (SPX) Feb 22, 2011
GIS Development with intent to expand its activities and programs in Latin American continent has announced their upcoming conference Latin American Geospatial Forum to be organised from 17th 19th August 2011 at Barra Windsor Hotel, Rio de Janeiro, Brazil, preceded by a pre-conference NMO-Industry exchange forum on 16th August 2011. The Latin American Geospatial Forum is GIS Development s ... read more

Apple MacBooks get speedier with Intel technology

NASA Mission to Tote CU Instrument And Student Satellite

First Series Of Laser-Guided Maverick Captive Flight Testing Completed

Out Of Thin Air

RC-12X Aircraft Provides Highly-Capable SIGINT Systems To Warfighter

ThalesRaytheonSystems Announces Command View Mobile For C4I Solution

Northrop Grumman Next-Gen FBCB2 System Approved For Fielding

Boeing To Demonstrate Aviation Command And Control Subsystem For US Marine Corps

Successful Launch Of REXUS 9

24 hour delay for launch of NASA satellite

SpaceX to focus on astronaut capsule

ILS Appoints Vice President Of Sales Marketing And Communications

Helping Towing Fleets Manage Operations More Efficiently

CSC Launches Mobile Solution For Healthcare Professionals

Destron Fearing Launches Global Pocket Reader Series

Garmin And Volvo Penta Form Strategic Alliance

Revolutionary Design For Stratospheric High Altitude Balloon Missions

US "air capital" savors Boeing tanker victory

China to spend $230 bn on aviation sector

EU states can fine airlines for excessive noise: court

Manipulating Molecules For A New Breed Of Electronics

Physicists Isolate Bound States In Graphene Superconductor Junctions

Intel to invest $5 billion in new Arizona plant

DuPont Microcircuit Materials Expands Printed Electronics Research with Holst Centre Collaboration

Glory And Taurus Ready For Liftoff

Earth's Core Rotating Faster Than Rest Of The Planet

2012 Science Budget Endorsed By Earth And Space Scientists

GIS Development Announces Latin American Geospatial Forum

Kenya, France seek new global environment body

Baby dolphins dying along oil-soaked US Gulf Coast

Beijing air pollution off the charts, US says

The Red Mud Accident In Ajka And Potential Health Effects Of Fugitive Dust

The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement