. Space Industry and Business News .

Fusion: X-ray laser zaps solid to 2 million degrees
by Staff Writers
Paris (AFP) Jan 25, 2012

The quest to create nuclear fusion may have come a step closer when scientists heated solid matter to two million degrees with the world's most powerful X-ray laser, a study reported Wednesday.

A team of researchers working at the SLAC National Accelerator Laboratory in Menlo Park, California used the rapid-fire laser -- a billion times brighter that any other man-made X-ray source -- to flash-heat a miniscule piece of aluminum foil.

In so doing, they created a form of plasma known as "hot dense matter," reaching temperatures hotter than two million degrees Celsius (3.6 million degrees Fahrenheit).

The whole process lasted less than a trillionth of a second.

Gas-like plasma is often called the fourth state of matter after solids, liquids and gases. While uncommon on Earth, it makes up over 99 percent of the visible universe, including the interior of stars such as the Sun.

"Making extremely hot, dense matter is important scientifically if we are ultimately to understand the conditions that exist inside stars and at the center of giant planets within our own solar system," said lead author Sam Vinko, a researcher at the University of Oxford.

Scientists have long been able to create electrically-charged plasma by heating gases, which can ripe away electrons from their atoms.

But up to now no tools existed for doing the same thing at solid densities that cannot be penetrated by conventional laser beams.

In the experiments, reported in the journal Nature, scientists used ultra-short wavelengths of X-ray laser light to blast the aluminum foil and create, for the first time, a uniform patch of plasma, a cube about one thousandth of a centimetre per side.

The results will be measured against theories and computer simulations as to how hot, dense matter behaves.

And it should help understand -- and perhaps one day recreate -- nuclear fusion, long heralded as a potentially unlimited and clean source of energy, the researchers said.

"Linac Coherent Light Source (LCLS) is really going to revolutionise the field, in my view," said co-author Justin Wark, also at Oxford, referring to the laser used in the experiment.

There are currently two main paths towards making fusion energy.

One uses large-scale magnetic fields, the approach adopted by the International Thermonuclear Experimental Reactor (ITER) in France, set to become operational in 2019.

The National Ignition Facility in the United States (NIF), by contrast, is one of several experimental facilities to use very high-energy optical lasers to achieve the same end.

Related Links
Space Technology News - Applications and Research

Get Our Free Newsletters Via Email
Buy Advertising Editorial Enquiries


. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Research could improve laser-manufacturing technique
West Lafayette, IN (SPX) Dec 21, 2011
Engineers have discovered details about the behavior of ultrafast laser pulses that may lead to new applications in manufacturing, diagnostics and other research. Ultrafast laser pulses are used to create features and surface textures in metals, ceramics and other materials for applications including the manufacture of solar cells and biosensors. The lasers pulse at durations of 100 ... read more

First 'cloaking' of a 3D object announced

Fusion: X-ray laser zaps solid to 2 million degrees

World's most powerful X-ray laser creates 2-million-degree matter

Netflix gains subscribers, shares surge

Brazil to assemble Harris tactical radio

Northrop Grumman Wins Award for USAF Design and Engineering Support Program

Fourth WGS Satellite Sends First Signals from Space

Boeing to Build More Wideband Global SATCOM Satellites for USAF

MT Aerospace wins contract for operation and maintenance of launch facilities' mechanical systems

Proton-M, Dutch Satellite Taken to Launch Pad

Russian launch of Dutch satellite delayed

Delta 4 Launches Air Force Wideband Global SATCOM-4 Satellite

LED lights point shoppers in the right direction

ESA Director General praises UK space innovation

Opening of UK site producing the heart of Galileo

Lockheed Martin-Built GPS Satellites Reach 150 Years of Combined On Orbit Service

Stanford aero-engineers debut open-source fluid dynamics design application

Philippines welcomes PAL sale plan

Cathay to buy six Airbus planes for US$1.63bn

JAL names ex-pilot as new president

Researchers Devise New Means For Creating Elastic Conductors

Cooling semiconductor by laser light

A new class of electron interactions in quantum systems

A big leap toward lowering the power consumption of microprocessors

NASA Finds 2011 Ninth-Warmest Year on Record

Satellite observes spatiotemporal variations in mid-upper tropospheric methane over China

NASA Sees Repeating La Nina Hitting its Peak

Map project accuses Google users of edits

Drone discovers 'river of blood' in Texas

Nano form of titanium dioxide can be toxic to marine organisms

Mysterious Flotsam in Gulf of Mexico Came from Deepwater Horizon Rig

BP could pay US $25 billion for Gulf oil spill: analyst


The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement