Subscribe free to our newsletters via your
. Space Industry and Business News .




CHIP TECH
Diamond as a Building Material for Optical Circuits
by Staff Writers
Karlsruhe, Germany (SPX) Apr 16, 2013


Two parallel free-standing waveguides made of polycrystalline diamond serve as mechanical resonators. Optical fields (red/blue) are observed to propagate inside of them. (Graphic: KIT/CFN/Pernice).

The application of light for information processing opens up a multitude of possibilities. However, to be able to adequately use photons in circuits and sensors, materials need to have particular optical and mechanical properties. Researchers at the Karlsruhe Institute of Technology (KIT) have now for the first time used polycrystalline diamond to manufacture optical circuits and have published their results online in Nature Communications.

"Diamond has several properties that allow us to manufacture all components of a ready-to-use optomechanical circuit monolithically, so to speak," says KIT research group leader Wolfram Pernice.

"The elements thus manufactured that is, the resonators, circuits, and the wafer, are attractive because of their high quality."

Diamond is optically transparent to light waves of a wide range of wavelengths including the visible spectrum between 400 and 750 nm. It is due to this fact that it can be used specifically in optomechanical circuits for applications in sensor technology and fluorescence imaging, or for novel optical biological measuring methods.

Whereas the high refractive index of diamond and the absence of absorption allow an efficient photon transport, its high modulus of elasticity makes it a robust material which adapts excellently to rough surfaces and releases heat rapidly.

So far, optical circuits have been manufactured using monocrystalline diamond substrates i.e., highly pure crystals with typically no more than one impurity atom to every one billion diamond atoms. Such circuits are bound to be small and their application to optical systems has required sophisticated fabrication methods.

Now, for the first time, the research group headed by Pernice used polycrystalline diamond for the fabrication of wafer-based optomechanical circuits. Even though its crystal structures are more irregular, polycrystalline diamond is robust and thus can be more easily processed.

It is due to these specific properties that polycrystalline diamond can be used on much larger areas than monocrystalline material. Polycrystalline diamond conducts photons almost as efficiently as the monocrystalline substrate and is suitable for industrial use. As a matter of fact, monolithic optomechanical components could not have been manufactured without this new material.

Optomechanics combines integrated optics with mechanical elements e.g., with nanomechanical resonators in the case of the optomechanical circuit developed by Pernice and his group. These oscillatory systems react to a certain frequency. When that frequency occurs, the resonator is excited into vibration.

"Nanomechanical resonators are among today's most sensitive sensors and are used in various precision measurements. It is extremely difficult, however, to address such smallest components through conventional measuring methods," explains Patrik Rath, first author of the study.

"In our study, we have made use of the fact that today, nanophotonic components can be manufactured in the same sizes as nanoscale mechanical resonators. When the resonator responds, corresponding optical signals are transferred directly to the circuit." This novel development has allowed the combining of once separate fields of research and has enabled the realization of highly efficient optomechanical circuits.

Integrated optics works in a similar manner to integrated electrical circuits. Whereas optical circuits transmit information via photons, conventional electronic circuits transfer data via electrons. Integrated optics aims to combine all components required for optical communication in an integrated optical circuit to avoid a detour via electrical signals. In both cases, the respective circuits are applied to slices less than one mm in thickness i.e., to the so-called wafers.

The polycrystalline diamond was manufactured in cooperation with the Fraunhofer Institute for Applied Solid State Physics and the company Diamond Materials in Freiburg, Germany.

The prototypes manufactured within the Integrated Quantum Photonics-project at the DFG Center for Functional Nanostructures (CFN) in Karlsruhe open up new ways for entirely optically controlled platforms that are increasingly needed in fundamental research and advanced sensor technologies. These technologies include accelerometers that are integrated in various electronic devices such as airbag sensors or smartphone waterlevels.

The study is available on the portal of Nature.

.


Related Links
Karlsruhe Institute of Technology
DFG Center of Functional Nanostructures
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





CHIP TECH
Researchers evaluate Bose-Einstein condensates for communicating among quantum computers
Atlanta GA (SPX) Apr 16, 2013
Quantum computers promise to perform certain types of operations much more quickly than conventional digital computers. But many challenges must be addressed before these ultra-fast machines become available, among them, the loss of order in the systems - a problem known as quantum decoherence - which worsens as the number of bits in a quantum computer increases. One proposed solution is t ... read more


CHIP TECH
High pressure gold nanocrystal structure revealed

Scientists design new adaptive material inspired by tears

UC Research Demonstrates Why Going Green Is Good Chemistry

Florida Tech professors present 'dark side of dark lightning' at conference

CHIP TECH
Boeing Delivers FAB-T Test Units to US Air Force

Fourth Lockheed Martin MUOS Satellite Entering System Test as Communication Module and Multi-Beam Antenna Installed

Advancing secure communications: A better single-photon emitter for quantum cryptography

Northrop Grumman Awarded U.S. Navy Contract to Upgrade, Enhance NGC2P Tactical Data Link Processor

CHIP TECH
Ukraine aims to accelerate space industry development

Payload integration is underway for Vega's second mission from the Spaceport

Ecuador to launch first homemade satellite

Arianespace receives the second Vega for launch from French Guiana

CHIP TECH
Smithsonian dedicates new exhibition to navigation

Extreme Miniaturization: Seven Devices, One Chip to Navigate without GPS

Down the slopes with space app in your pocket

Lockheed Martin Team Completes Delta Preliminary Design for Next GPS III Satellite Capabilities

CHIP TECH
Boeing X-48C Blended Wing Body Research Aircraft Completes Flight Testing

X-48 Project Completes Flight Research for Cleaner, Quieter Aircraft

Dassault and India in Rafale deal standoff

Israel boosts air force 'pack of leopards

CHIP TECH
Diamond as a Building Material for Optical Circuits

Researchers evaluate Bose-Einstein condensates for communicating among quantum computers

Interdisciplinary team demonstrates superconducting qualities of topological insulators

Redesigned Material Could Lead to Lighter, Faster Electronics

CHIP TECH
Belarus, Russia to Create New Satellite Grouping

Kazakhstan to launch first remote sensing satellite this year

Raytheon brings automation and virtualization to NASA's Earth Observing System

Ball Aerospace Begins Integration Phase for DigitalGlobe's WorldView-3 Satellite

CHIP TECH
Albania to hold referendum on waste imports

Smog-eating pavement on greenest street in America

Latin America looks to earn from e-waste

Russia seeks Baltic pollution partnerships




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement