Space Industry and Business News  





.
CHIP TECH
Caltech Physicists Demonstrate A Four-Fold Quantum Memory

Writing laser pulses are switched on by the intensity modulator (IM_write) and generate correlated light scattering from four collections of atoms (atomic ensembles which serve as quantum memories). Detection of a single photon at Dh for the light scattered from the atoms creates the entangled state rho^(A)_w with one spin excitation shared collectively among the ensembles (as illustrated at the top of the figure).

At later times, the intensity modulator (IM_read) switches on read laser pulses that read out the quantum information stored in the atoms, thereby creating four entangled beams of light in the state rho^(gamma)_w illustrated in the lower right corner of the figure. The inset is a fluorescence image of the laser-cooled atomic ensembles a, b, c and d that become entangled. Credit: Akihisa Goban/Nature
by Staff Writers
Pasadena CA (SPX) Nov 18, 2010
Researchers at the California Institute of Technology (Caltech) have demonstrated quantum entanglement for a quantum state stored in four spatially distinct atomic memories.

Their work, described in the November 18 issue of the journal Nature, also demonstrated a quantum interface between the atomic memories-which represent something akin to a computer "hard drive" for entanglement-and four beams of light, thereby enabling the four-fold entanglement to be distributed by photons across quantum networks.

The research represents an important achievement in quantum information science by extending the coherent control of entanglement from two to multiple (four) spatially separated physical systems of matter and light.

The proof-of-principle experiment, led by William L. Valentine Professor and professor of physics H. Jeff Kimble, helps to pave the way toward quantum networks. Similar to the Internet in our daily life, a quantum network is a quantum "web" composed of many interconnected quantum nodes, each of which is capable of rudimentary quantum logic operations (similar to the "AND" and "OR" gates in computers) utilizing "quantum transistors" and of storing the resulting quantum states in quantum memories.

The quantum nodes are "wired" together by quantum channels that carry, for example, beams of photons to deliver quantum information from node to node. Such an interconnected quantum system could function as a quantum computer, or, as proposed by the late Caltech physicist Richard Feynman in the 1980s, as a "quantum simulator" for studying complex problems in physics.

Quantum entanglement is a quintessential feature of the quantum realm and involves correlations among components of the overall physical system that cannot be described by classical physics. Strangely, for an entangled quantum system, there exists no objective physical reality for the system's properties. Instead, an entangled system contains simultaneously multiple possibilities for its properties. Such an entangled system has been created and stored by the Caltech researchers.

Previously, Kimble's group entangled a pair of atomic quantum memories and coherently transferred the entangled photons into and out of the quantum memories. For such two-component-or bipartite-entanglement, the subsystems are either entangled or not.

But for multi-component entanglement with more than two subsystems-or multipartite entanglement-there are many possible ways to entangle the subsystems.

For example, with four subsystems, all of the possible pair combinations could be bipartite entangled but not be entangled over all four components; alternatively, they could share a "global" quadripartite (four-part) entanglement.

Hence, multipartite entanglement is accompanied by increased complexity in the system. While this makes the creation and characterization of these quantum states substantially more difficult, it also makes the entangled states more valuable for tasks in quantum information science.

To achieve multipartite entanglement, the Caltech team used lasers to cool four collections (or ensembles) of about one million Cesium atoms, separated by 1 millimeter and trapped in a magnetic field, to within a few hundred millionths of a degree above absolute zero.

Each ensemble can have atoms with internal spins that are "up" or "down" (analogous to spinning tops) and that are collectively described by a "spin wave" for the respective ensemble. It is these spin waves that the Caltech researchers succeeded in entangling among the four atomic ensembles.

The technique employed by the Caltech team for creating quadripartite entanglement is an extension of the theoretical work of Luming Duan, Mikhail Lukin, Ignacio Cirac, and Peter Zoller in 2001 for the generation of bipartite entanglement by the act of quantum measurement. This kind of "measurement-induced" entanglement for two atomic ensembles was first achieved by the Caltech group in 2005.

In the current experiment, entanglement was "stored" in the four atomic ensembles for a variable time, and then "read out"-essentially, transferred-to four beams of light.

To do this, the researchers shot four "read" lasers into the four, now-entangled, ensembles. The coherent arrangement of excitation amplitudes for the atoms in the ensembles, described by spin waves, enhances the matter-light interaction through a phenomenon known as superradiant emission.

"The emitted light from each atom in an ensemble constructively interferes with the light from other atoms in the forward direction, allowing us to transfer the spin wave excitations of the ensembles to single photons," says Akihisa Goban, a Caltech graduate student and coauthor of the paper.

The researchers were therefore able to coherently move the quantum information from the individual sets of multipartite entangled atoms to four entangled beams of light, forming the bridge between matter and light that is necessary for quantum networks.

The Caltech team investigated the dynamics by which the multipartite entanglement decayed while stored in the atomic memories.

"In the zoology of entangled states, our experiment illustrates how multipartite entangled spin waves can evolve into various subsets of the entangled systems over time, and sheds light on the intricacy and fragility of quantum entanglement in open quantum systems," says Caltech graduate student Kyung Soo Choi, the lead author of the Nature paper.

The researchers suggest that the theoretical tools developed for their studies of the dynamics of entanglement decay could be applied for studying the entangled spin waves in quantum magnets.

Further possibilities of their experiment include the expansion of multipartite entanglement across quantum networks and quantum metrology. "Our work introduces new sets of experimental capabilities to generate, store, and transfer multipartite entanglement from matter to light in quantum networks," Choi explains.

"It signifies the ever-increasing degree of exquisite quantum control to study and manipulate entangled states of matter and light."

In addition to Kimble, Choi, and Goban, the other authors of the paper, "Entanglement of spin waves among four quantum memories," are Scott Papp, a former postdoctoral scholar in the Caltech Center for the Physics of Information now at the National Institute of Standards and Technology in Boulder, Colorado, and Steven van Enk, a theoretical collaborator and professor of physics at the University of Oregon, and an associate of the Institute for Quantum Information at Caltech.



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
California Institute of Technology
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com



Tempur-Pedic Mattress Comparison

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News
CHIP TECH
Building A Racetrack Memory
Lausanne, Switzerland (SPX) Nov 16, 2010
Annoyed by how long it took his computer to boot up, Klaui began to think about an alternative. Hard disks are cheap and can store enormous quantities of data, but they are slow; every time a computer boots up, 2-3 minutes are lost while information is transferred from the hard disk into RAM. The global cost in terms of lost productivity and energy consumption runs into the hundreds of mil ... read more

.
Get Our Free Newsletters Via Email
  


CHIP TECH
Sonar System Inspired By Dolphins

New Technology Gives On-Site Assessments In Archaeology

Thales announces venture for Chinese in-flight systems

Laser camera 'sees' around corners

CHIP TECH
Codan Receives JITC Certification For 2110 HF Manpack

Northrop Grumman Bids for Marine Corps Common Aviation CnC

DSP Satellite System Celebrates 40 Years

ManTech Awarded US Army Contract To Provide ECCS In Afghanistan

CHIP TECH
ILS Proton Launches Lightsquared Satellite

Russia Launches Advanced US Telecom Satellite

NASA plans Alaska satellite launch

ULA Launches 350th Delta

CHIP TECH
Russia To Launch New Generation Satellite In 2013

SkyTraq Introduces New GLONASS/GPS Receiver

SES To Contribute To Galileo Operations

GPS IIF-1 Introduces A Host Of New Capabilities For Users

CHIP TECH
Airbus CEO takes dive as A380 has issues

Air China announces 4.49 billion-dollar Airbus deal

Embraer signs 1.5-billion-dollar deal with China's AVIC

Lawsuit looms for EADS over A380: lawyers

CHIP TECH
Caltech Physicists Demonstrate A Four-Fold Quantum Memory

Building A Racetrack Memory

Microsoft sues Motorola over 'excessive' royalty demands

Motorola fires back against Microsoft in patent dispute

CHIP TECH
UN-SPIDER Opens Beijing Office

Satellites Tracking Mt Merapi Volcanic Ash Clouds

Faster Flood Forecasting At SERVIR-Africa

Enhancing Sustainable Development Of Earth

CHIP TECH
Listening For Ocean Spills And Their Ecological Effects

Hungary toxic flood villagers demonstrate for compensation

Naples garbage crisis escalating: local official

Canadian tailings pond causes toxic fears


The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement