Free Newsletters - Space - Defense - Environment - Energy - Solar - Nuclear
..
. Space Industry and Business News .




TECH SPACE
Bio-inspired glue keeps hearts securely sealed
by Staff Writers
Boston MA (SPX) Jan 16, 2014


The waterproof, light-activated glue developed by researchers at Brigham and Women's Hospital, Boston Children's Hospital and Massachusetts Institute of Technology can successfully secure biodegradable patches to seal holes in a beating heart. Credit: Karp Laboratory.

When a child is born with a heart defect such as a hole in the heart, the highly invasive therapies are challenging due to an inability to quickly and safely secure devices inside the heart. Sutures take too much time to stitch and can cause stress on fragile heart tissue, and currently available clinical adhesives are either too toxic or tend to lose their sticking power in the presence of blood or under dynamic conditions, such as in a beating heart.

"About 40,000 babies are born with congenital heart defects in the United States annually, and those that require treatment are plagued with multiple surgeries to deliver or replace non-degradable implants that do not grow with young patients," says Jeffrey Karp, PhD, Division of Biomedical Engineering, BWH Department of Medicine, co-senior study author of a new study that may improve how surgeons treat congenital heart defects.

The study will be published on January 8, 2014, in Science Translational Medicine.

In the preclinical study, researchers from Boston Children's Hospital, BWH and Massachusetts Institute of Technology (MIT) developed a bio-inspired adhesive that could rapidly attach biodegradable patches inside a beating heart-in the exact place where congenital holes in the heart occur, such as with ventricular heart defects.

Recognizing that many creatures in nature have secretions that are viscous and repel water, enabling them to attach under wet and dynamic conditions, the researchers developed a material with these properties that also is biodegradable, elastic and biocompatible. According to the study authors, the degradable patches secured with the glue remained attached even at increased heart rates and blood pressure.

"This adhesive platform addresses all of the drawbacks of previous systems in that it works in the presence of blood and moving structures," says Pedro del Nido, MD, Chief of Cardiac Surgery, Boston Children's Hospital, co-senior study author. "It should provide the physician with a completely new, much simpler technology and a new paradigm for tissue reconstruction to improve the quality of life of patients following surgical procedures."

Unlike current surgical adhesives, this new adhesive maintains very strong sticking power when in the presence of blood, and even in active environments.

"This study demonstrated that the adhesive was strong enough to hold tissue and patches onto the heart equivalent to suturing," says the study's co-first author Nora Lang, MD, Department of Cardiac Surgery, Boston Children's Hospital. "Also, the adhesive patch is biodegradable and biocompatible, so nothing foreign or toxic stays in the bodies of these patients."

Importantly, its adhesive abilities are activated with ultraviolent (UV) light, providing an on-demand, anti-bleeding seal within five seconds of UV light application when applied to high-pressure large blood vessels and cardiac wall defects.

"When we attached patches coated with our adhesive to the walls of a beating heart, the patches remained despite the high pressures of blood flowing through the heart and blood vessels," says Maria N. Pereira, PhD, Division of Biomedical Engineering, BWH Department of Medicine, co-first study author.

The researchers note that their waterproof, light-activated adhesive will be useful in reducing the invasiveness of surgical procedures, as well as operating times, in addition to improving heart surgery outcomes.

"We are delighted to see the materials we developed being extended to new applications with the potential to greatly improve human life," said Robert Langer, ScD, MIT, study author.

The adhesive technology (and other related platforms) has been licensed to a start-up company, Gecko Biomedical, based in Paris. The company has raised 8 million Euros in their recently announced Series A financing round and expects to bring the adhesive to the market within two to three years.

.


Related Links
Brigham and Women's Hospital
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECH SPACE
Starting Fire With Water
Huntsville AL (SPX) Jan 14, 2014
When firefighters want to extinguish a blaze, they often douse it with water. Astronauts on board the ISS, however, are experimenting with a form of water that does the opposite. Instead of stopping fire, this water helps start it. "We call it 'supercritical water,'" says Mike Hicks of the Glenn Research Center in Ohio. "And it has some interesting properties." Water becomes supercritical ... read more


TECH SPACE
Starting Fire With Water

SimCity coming down from the "cloud"

GPM Completes Spacecraft Alignments

S. Asia takes 71 percent of market for ship breaking

TECH SPACE
Northrop Grumman Supports US Marine Corps Command, Control and Communications Facility for Tactical Air Operations

Rocket Rokot brings 3 Russian military-purpose satellites on orbit

US Air Force selects Raytheon's high-bandwidth satellite terminal for secure, protected communications

Military Communication Improved as 6th Boeing-built Wideband Satellite Enters Service

TECH SPACE
Vega Flight VV03 And Ariane Flight VA218

Competiveness, quality and launcher family evolution are the keywords for Arianespace in 2014 and beyond

Orbital Sciences launches second mission to space station

Cygnus Heads to Space for First Station Resupply Mission

TECH SPACE
Northrop Grumman and Trex Enterprises to Introduce Celestial Navigation to Soldier Precision Targeting Laser Systems

GPS Traffic Maps for Leatherback Turtles Show Hotspots to Prevent Accidental Fishing Deaths

China to upgrade homegrown GPS to improve accuracy

Beidou to cover world by 2020 with 30 satellites

TECH SPACE
Embraer says it met all regional jet delivery targets

Swiss could vote in May on fighter deal

US F-18 fighter crashes off Virginia coast

Lockheed Martin Receives JASSM Contract For Additional Finnish Air Force F-18 Integration

TECH SPACE
Ultra-flexible chip can be wrapped around a hair

Exfoliation method paves way for 2D materials to be used in printable photonics and electronics

Theorists Predict New State of Quantum Matter May Have Big Impact on Electronics

Low-power tunneling transistor for high-performance devices at low voltage

TECH SPACE
Charles River Analytics Develops Satellite Image Processing System for NASA

Earth may be heaver than thought due to invisible belt of dark matter

More BARREL Balloons Take to the Skies

China's HD observation satellite opens its eyes

TECH SPACE
Toxic chemicals found in children's clothes, shoes: Greenpeace

Italy's govt agrees to send in army against mafia dumps

Hong Kong suffers in smog as pollution problems rise

ADB says China and Japan should tackle pollution together




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement