Free Newsletters - Space News - Defense Alert - Environment Report - Energy Monitor
. Space Industry and Business News .




TECH SPACE
19th Century Math Tactic Tweak Yields Answers 200 Times Faster
by Staff Writers
Baltimore MD (SPX) Jul 22, 2014


Johns Hopkins graduate student Xiang Yang, at right, teamed up with Rajat Mittal, a professor of mechanical engineering, to revamp a "useless" 169-year-old math strategy, making it work up to 200 times faster. Image courtesy Will Kirk.

A relic from long before the age of supercomputers, the 169-year-old math strategy called the Jacobi iterative method is widely dismissed today as too slow to be useful. But thanks to a curious, numbers-savvy Johns Hopkins engineering student and his professor, it may soon get a new lease on life.

With just a few modern-day tweaks, the researchers say they've made the rarely used Jacobi method work up to 200 times faster. The result, they say, could speed up the performance of computer simulations used in aerospace design, shipbuilding, weather and climate modeling, biomechanics and other engineering tasks.

Their paper describing this updated math tool was published in the online edition of the Journal of Computational Physics.

"For people who want to use the Jacobi method in computational mechanics, a problem that used to take 200 days to solve may now take only one day," said Rajat Mittal, a mechanical engineering professor in the university's Whiting School of Engineering and senior author of the journal article.

"Our paper provides the recipe for how to speed up this method significantly by just changing four or five lines in the computer code."

This dramatic makeover emerged quietly in the fall of 2012, after Mittal told students in his Numerical Methods class about the Jacobi method. Mittal cited Jacobi's strategy as a mathematically elegant but practically useless method, and then moved on to faster methods and more modern topics. Xiang Yang, then a first-year grad student in the class was listening intently.

Mittal had told his students that Carl Gustav Jacob Jacobi, a prominent German mathematician, unveiled this method in 1845 as a way to solve systems of linear equations by starting with a guess and then repeating a series of math operations over and over until a useful solution appeared.

By the early 20th Century, the method was being used by "human computers," groups of men and women who were each assigned to perform small pieces of larger math problems. A noted mathematician during that era managed to make the method proceed five times faster, but that was still considered rather slow. With the advent of speedier strategies and electronic computers, the Jacobi method fell out of favor.

"It just took so much time and so many computations to get to the answer you wanted," said mechanical engineering grad student Yang. "And there were better methods. That's why this Jacobi method isn't being used much today."

But after learning about the method in Mittal's class, Yang began tinkering with it. He returned to Mittal and proposed a way to make the process of repeating numerical estimates move more efficiently, speeding up the arrival of a solution.

"Instead of saying that this method has been around for 169 years, and that everyone has already tried to improve it without much success, Prof. Mittal told me that he felt my idea was very promising," Yang said, "and he encouraged me to work on it."

Yang spent a couple of weeks honing the updated math strategy, which he and his professor called a "scheduled relaxation Jacobi method." Then the grad student and Mittal began working together on a paper about the work that could be submitted to a peer-reviewed journal, with Yang as lead author.

Now that it has been published and is being shared freely, Mittal expects the modified method to be embraced in many industry applications, particularly those involving fluid mechanics.

For example, when an aerospace engineer wants to test several different wing designs in a computer simulation program, the revised Jacobi method could speed up the process.

"I expect this to be adopted very quickly," Mittal said. "Everyone is competing for access to powerful computer systems, and the new Jacobi method will save time. In fact, the beauty of this method is that it is particularly well suited for the large-scale parallel computers that are being used in most modern simulations."

Oddly enough, the Jacobi update is not directly related to the doctoral project that grad student Yang is supposed to be focusing on: how barnacles on the side of a ship affect its movement through water. But Yang said his doctoral adviser, Charles Meneveau, another mechanical engineering professor, encouraged him to devote some time to the Jacobi paper as well.

Yang, 24, grew up in China and earned his undergraduate engineering degree at Peking University. The school's dean of engineering, Shiyi Chen, a former Johns Hopkins faculty member, encouraged Yang to continue his studies at the Baltimore campus. The grad student said he's appreciated the faculty support at Johns Hopkins.

"Prof. Mittal taught me to look at a lot of possibilities with an open mind," he said. "Then, it's been relatively easy to handle my schoolwork. He's the one who inspired me."

.


Related Links
Johns Hopkins University
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECH SPACE
No-wait data centers
Boston MA (SPX) Jul 21, 2014
Big websites usually maintain their own "data centers," banks of tens or even hundreds of thousands of servers, all passing data back and forth to field users' requests. Like any big, decentralized network, data centers are prone to congestion: Packets of data arriving at the same router at the same time are put in a queue, and if the queues get too long, packets can be delayed. At the ann ... read more


TECH SPACE
19th Century Math Tactic Tweak Yields Answers 200 Times Faster

A new multi-bit 'spin' for MRAM storage

No-wait data centers

French minister opposes Australian firm's plan to ship waste

TECH SPACE
Third MUOS satellite heads for final checkout

Saab reports U.S. Army order for radio systems

Thales enhancing communications of EU peacekeepers

Exelis enhancing communications for NATO country

TECH SPACE
SpaceX Falcon 9 v1.1 Flights Deemed Successful

ISS 'space truck' launch postponed: Arianespace

45th Space Wing launches 6 second-generation ORBCOMM satellites

Sanctions on Russian launchers confers advantage to others

TECH SPACE
Russian GLONASS to Boost Yield Capacity by 50 percent

US Refusal to Host GLONASS Base a Form of Competition with Russia

New device developed to defeat GPS jamming

EU selects CGI to support Galileo Commercial Service Initiative

TECH SPACE
In air tragedy, lightning strikes twice for Malaysia

Airbus supplying more aircraft to Egyptian Air Force

Lockheed opening new office in Britain

Brazil's Embraer sells 60 commercial planes to China

TECH SPACE
Technique simplifies the creation of high-tech crystals

Rice's silicon oxide memories catch manufacturers' eye

The World's First Photonic Router

Negar Sani solved the mystery of the printed diode

TECH SPACE
NASA's Van Allen Probes Show How to Accelerate Electrons

Ten-Year Endeavor: NASA's Aura Tracks Pollutants

Hyperspec Sensors Target Vegetation Fluorescence

New Satellite Imagery Now Available for ArcGIS Online Users Worldwide

TECH SPACE
New study links dredging to diseased corals

Italy cruise ship toxins threaten wildlife: activists

Straits of Mackinac 'worst possible place' for a Great Lakes oil spill

Rising concern about 'microplastics' in the ocean




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.