Subscribe free to our newsletters via your
. Space Industry and Business News .




CHIP TECH
World Record Silicon-based Millimeter-wave Power Amplifiers
by Staff Writers
Washington DC (SPX) Apr 06, 2013


The first team, composed of performers at the University of Southern California and Columbia University, achieved output power levels of nearly 0.5 W at 45 gigahertz with a 45 nanometer silicon complementary metal oxide semiconductor (CMOS) chip.

Two teams of DARPA performers have achieved world record power output levels using silicon-based technologies for millimeter-wave power amplifiers. RF power amplifiers are used in communications and sensor systems to boost power levels for reliable transmission of signals over the distance required by the given application.

These breakthroughs were achieved under the Efficient Linearized All-Silicon Transmitter ICs (ELASTx) program. Further integration efforts may unlock applications in low-cost satellite communications and millimeter-wave sensing.

The first team, composed of performers at the University of Southern California and Columbia University, achieved output power levels of nearly 0.5 W at 45 gigahertz with a 45 nanometer silicon complementary metal oxide semiconductor (CMOS) chip.

This world record result for CMOS-based power amplifiers doubles output power compared to the next best reported CMOS millimeter-wave power amplifier. The chip design used multiple stacked 45 nanometer silicon-on-insulator CMOS devices for increased effective output voltage swing and efficient 8-way on-chip power-combining.

Results will be reported at the 2013 Institute of Electrical and Electronics Engineers Radio Frequency Integrated Circuits Symposium.

The second team, made up of MIT and Carnegie Mellon University researchers, demonstrated a 0.13 micrometer silicon-germanium (SiGe) BiCMOS power amplifier employing multistage power amplifier cells and efficient 16-way on-chip power-combining.

This amplifier has achieved power output of 0.7 W at 42 gigahertz, a 3.5 times increase in output power compared to the next best reported silicon-based millimeter-wave power amplifier; this result was reported at the 2013 International Solid-State Circuits Conference (ISSCC).

"Millimeter-wave power amplifiers have been demonstrated at this power level before, but this is a record with silicon-based technologies," said Sanjay Raman, DARPA program manager.

"Producing this level of output with silicon may allow integration on a chip with complex analog and digital signal processing. In the 42-25 GHz range, this would enable high bandwidth/data-rate transmitters needed for satellite communications at potentially very low cost and size, weight and power."

Silicon-based circuit techniques developed under the ELASTx program may eventually be applied to even higher performance compound semiconductor devices, such as gallium nitride high electron mobility transistors.

These architectural breakthroughs will be investigated for such integration opportunities under a different DARPA effort, the Diverse Accessible Heterogeneous Integration (DAHI) program.

.


Related Links
DARPA
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
KAIST develops a low-power 60 GHz radio frequency chip for mobile devices
Daejeon, South Korea (SPX) Apr 06, 2013
As the capacity of handheld devices increases to accommodate a greater number of functions, these devices have more memory, larger display screens, and the ability to play higher definition video files. If the users of mobile devices, including smartphones, tablet PCs, and notebooks, want to share or transfer data on one device with that of another device, a great deal of time and effort a ... read more


CHIP TECH
Theory and practice key to optimized broadband, low-loss optical metamaterials

CWRU-led scientists build material that mimics squid beak

Watching fluid flow at nanometer scales

Michigan Tech researcher slashes optics laboratory costs

CHIP TECH
Soldiers and Families Can Suffer Negative Effects from Modern Communication Technologies

DARPA Seeks More Robust Military Wireless Networks

DoD Selects Northrop Grumman for Joint Command and Control System

Northrop Grumman Highlights Affordable Milspace Communications

CHIP TECH
Future Looks Bright for Private US Space Ventures

Europe's next ATV resupply spacecraft enters final preparatio?ns for its Ariane 5 launch

ILS Proton Launches Satmex 8 Satellite for Satmex

When quality counts: Arianespace reaffirms its North American market presence

CHIP TECH
China preps civilian use of GPS system

GPS device could stem bike thefts

Apple patent shows pen with GPS, phone

Ground system improves satellite navigation precision

CHIP TECH
Hong Kong airbridge collapse rips off plane door

Third F-35B For United Kingdom Makes First Flight

Eurocopter vies for big-ticket Polish chopper deal

Bangladesh embarks on massive Yak deal

CHIP TECH
World Record Silicon-based Millimeter-wave Power Amplifiers

A giant step toward miniaturization

ORNL microscopy uncovers "dancing" silicon atoms in graphene

A mighty wind

CHIP TECH
First Light for ISERV Pathfinder, Space Station's Newest 'Eye' on Earth

Watching over you

New Live Bi-ocular Animations of Two Oceans Now Available

NASA Flies Radar South on Wide-Ranging Scientific Expedition

CHIP TECH
Smog-eating pavement on greenest street in America

Latin America looks to earn from e-waste

Russia seeks Baltic pollution partnerships

Indian court fines Vedanta $20 mn for polluting




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement