Subscribe free to our newsletters via your
. Space Industry and Business News .




TECH SPACE
Scientists unveil first method for controlling the growth of metal crystals
by Staff Writers
Warwick, UK (SPX) May 28, 2014


Professor Peter Sadler.

Researchers have announced the first ever method for controlling the growth of metal-crystals from single atoms. Published in the journal Nature Communications and developed at the University of Warwick, the method, called Nanocrystallometry, allows for the creation of precise components for use in nanotechnology.

Professor Peter Sadler from the University's Department of Chemistry commented that "The breakthrough with Nanocrystallometry is that it actually allows us to observe and directly control the nano-world in motion".

Using a doped-graphene matrix to slow down and then trap atoms of the precious metal osmium the researchers were able to control and quantify the growth of metal-crystals. When the trapped atoms come into contact with further osmium atoms they bind together, eventually growing into 3D metal-crystals.

"Tailoring nanoscopic objects is of enormous importance for the production of the materials of the future", says Dr Barry from the University's Department of Chemistry. "Until now the formation of metal nanocrystals, which are essential to those future materials, could not be controlled with precision at the level of individual atoms, under mild and accessible conditions."

Prof. Sadler says: "Nanocrystallometry's significance is that it has made it possible to grow with precision metal-crystals which can be as small as only 0.00000015cm, or 15 angstrom, wide. If a nanodevice requires a million osmium atoms then from 1 gram of osmium we can make about 400 thousand devices for every person on this earth. Compared to existing methods of crystal growth Nanocrystallometry offers a significant improvement in the economic and efficient manufacture of precision nanoscopic objects."

The researchers argue that the new method possesses a range of potential uses. "We envision the use Nanocrystallometry to build precise, atomic-level electronic circuits and new nano-information storage devices. The method also has significant potential for use in the biosensing of drugs, DNA and gases as well for creating unique nano-patterns on surfaces for security labelling and sealing confidential documents. Nanocrystallometry is also an innovative method for producing new metal nano-alloys, and many combinations can be envisaged. They may have very unusual and as yet unexplored properties", commented Dr Barry.

Nanocrystallometry was made possible by state-of-the-art facilities that are only to be found in the UK at the University of Warwick. "The advances in have been made possible thanks to our use of a state-of-the-art aberration-corrected high-resolution transmission electron microscope, the only one microscope of this kind in the UK, that has the potential to image individual atoms in this way. We know that things are made of atoms, but it is really rare to see them dancing in front of your eyes", says Dr Richard Beanland from the University's Department of Physics.

Commenting on the commercial potential for Nanocrystallometry Andrew Lee, Business Development Manager at Warwick Ventures said: "We think that the team's technique could be a real break-through in terms of offering the capability for micromanipulation and derivatization of a graphene surface; seeing multiple commercial opportunities arising in the future. We have put a patent application in place and we are actively seeking industrial partners with whom to collaborate in the future."

.


Related Links
University of Warwick
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Australia's Orica plans to ship toxic waste to France
Sydney (AFP) May 27, 2014
Australian chemicals firm Orica said Tuesday it has applied to ship a vast stockpile of toxic waste to France in a bid to end a long-running saga over how to dispose of it. The company has 15,000 tonnes of hexachlorobenzene (HCB) - a solvent manufacturing by-product and suspected human carcinogen - stored at Botany in Sydney's south and has been trying to get rid of it for years. Austr ... read more


TECH SPACE
Scientists unveil first method for controlling the growth of metal crystals

TUM researchers demonstrate: Brain controlled flight is possible

Leaving the islands

Probing satellites' mysterious death tumbling

TECH SPACE
NATO agency extends Globalcomms services

Rockwell supplying radios, satellite terminals to Canadian military

Exelis to help repair, modernize tactical radios

The U.S. Navy has contracted Harris Corporation for next-gen radios

TECH SPACE
SpaceX unveils capsule to ferry astronauts to space

Elon Musk to present manned DragonV2 spacecraft on May 29

Russia puts satellite in orbit from sea platform after 2013 flop

SpaceX Completes Qualification Testing of SuperDraco Thruster

TECH SPACE
Chinese army regulates sat nav use

Beidou to help safeguard fishermen on high seas

China's domestic navigation system guides Pakistan

China's BeiDou system standard ratified by IMO

TECH SPACE
Thales teams with Provincial Aerospace

RAF takes newly acquired intel plane for spin

New rules for airlines enrolled in military program

MH370 relatives accuse Malaysia of withholding data

TECH SPACE
EMCORE Introduces Internal Fiber Delay Line System for the Optiva Platform

New analysis eliminates a potential speed bump in quantum computing

NIST chip produces and detects specialized gas for biomedical analysis

Merger planned of electronic component providers

TECH SPACE
Sentinel-1 aids Balkan flood relief

Japan launches land observing satellite

Airbus partners with BAE for radar satellite imagery

Japan launches new satellite to survey disasters

TECH SPACE
Cutting Carbon Emissions Reduces Everyday Air Pollution

Sweden to sue EU for delay on hormone disrupting chemicals

Dangerous nitrogen pollution could be halved

Study lists dangerous chemicals linked to breast cancer




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.