Subscribe free to our newsletters via your
. Space Industry and Business News .




CHIP TECH
Printed photonic crystal mirrors shrink on-chip lasers down to size
by Staff Writers
Madison WI (SPX) Jul 26, 2012


File image.

Electrical engineers at The University of Texas at Arlington and at the University of Wisconsin-Madison have devised a new laser for on-chip optical connections that could give computers a huge boost in speed and energy efficiency. The team published its findings in Nature Photonics. At just 2 micrometers in height - smaller than the width of a human hair - the surface-emitting laser's vastly lower profile could make it cheaper and easier for manufacturers to integrate high-speed optical data connections into the microprocessors powering the next generation of computers.

Traditionally, edge-emitter lasers are considered as the candidate for on-chip optical links. But since mirrors are hard to form in such lasers and because the lasers occupy a large chip area, researchers have been challenged to find a practical way to monolithically integrate the mirrors on silicon chips.

Surface-emitting lasers necessary for a high-speed optical links between computer cores could be 20 to 30 micrometers tall, slightly bigger than one hole in the mesh of a car's oil filter. Yet the research team's engineers say that on a 1.5-micrometer wavelength optically connected chip, lasers of that size dwarf their silicon surroundings.

"It sits tall on the chip, like a tower," says Zhenqiang Ma, a UW-Madison professor of electrical and computer engineering. "That is definitely not acceptable."

Weidong Zhou, a UT Arlington professor of electrical engineering, says one challenge was integrating light into silicon chips, as silicon itself is not an efficient light emitter.

Zhou and Ma have collaborated to shrink on-chip lasers in recent years with funding from the U.S. Air Force Office of Scientific Research, Army Research Office and Defense Advanced Research Projects Agency.

As a solution, the researchers propose replacing layers and layers of reflectors necessary in the traditional distributed Bragg reflector laser design with two highly reflective photonic crystal mirrors.

Composed of compound semiconductor quantum well materials, each mirror is held in place with silicon nanomembranes, extremely thin layers of a silicon.

Zhou says integrating compound semiconductor quantum wells with silicon is a promising approach. "We apply a nanomembrane transfer printing process to accomplish this goal," he says. One layer of photonic crystal is equal to about 15 to 30 layers of dielectric reflectors found in conventional lasers.

As a result, manufacturers could fabricate 2-micrometer-high lasers for data links with performance that could equal current designs.

In addition to their larger size, reflectors for conventional lasers are made of materials grown only at very high temperatures, which means they can damage the chip they are placed upon during production. Since fabrication via transfer printing can occur at much lower temperatures, Zhou and Ma hope their laser design can be used to place optical links on silicon chips with much less wasted material, time and effort.

Optical data links already exist at the largest scales of data networks - the Internet's backbone is composed mainly of fiber-optic links between countries, cities and houses. But currently, that data moves over to slower metal connections and wiring as it travels from a regional hub to your house, your computer and eventually between the CPU cores within of the processor powering your machine.

"In the future, you'll see a move to optical at each step," Ma says. "The last step is within the chip, module to module optical links on the chip itself."

Through Semerane Inc., the Texas-based startup Zhou and Ma founded, the two hope to implement their production process in functional on-chip photonic crystal membrane lasers that could eventually be part of the next generation high-speed computer processors.

"We believe this laser will be used to make data links more practically available," Ma says.

"It is truly an interdisciplinary team effort," Zhou says. "The co-existence of photonics with electronics on the chip level shall enable multi-functional energy-efficient super-chips for applications in computing, communications, sensing, imaging and so on."

With widespread adoption of processors that use their laser design for optical links, Ma and Zhou could have a hand in increasing the speed along the local leg of the information superhighway.

"Eventually, a CPU core in America could be connected to another CPU core in Asia, with optical connections all along the chain," Ma says.

.


Related Links
University of Wisconsin-Madison
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
World's First Violet Nonpolar Vertical-Cavity Laser Technology
Santa Barbara CA (SPX) Jul 26, 2012
In a leap forward for laser technology, a team at University of California, Santa Barbara, has developed the first violet nonpolar vertical-cavity surface-emitting lasers (VCSELs) based on m-plane gallium nitride semiconductors. This recent discovery by LED pioneer Shuji Nakamura and his research team at UCSB is an achievement in VCSEL technology that opens doors for higher optical efficiency la ... read more


CHIP TECH
Google unveils ultrafast wired home project

Stone Age tools help to streamline modern manufacturing

Headwall's Hyperspectral Sensors Set to Lift Off with NT Space

Cassidian announces passive radar system

CHIP TECH
US Army awards Raytheon contract to upgrade Advanced Field Artillery Tactical Data System

Boeing-built Legacy UHF Payload Operating on MUOS-1 Satellite

Lockheed Martin Completes On-Orbit Testing of First US Navy MUOS Satellite

Northrop Grumman's RC-12X Airborne Signals Intelligence System Completes 1,000th Mission

CHIP TECH
Initial build-up is underway for Arianespace's fifth Ariane 5 launch in 2012

U.S. Bank Helps Fuel Future Space Flight as Bank behind SpaceX

HYLAS 2 and Intelsat 20 are prepared for Arianespace's next Ariane 5 mission

Degradation Free Spectrometers Sounding Rocket

CHIP TECH
GPS Can Now Measure Ice Melt, Change In Greenland Over Months Rather Than Years

SSTL announces the launch of exactView-1

GMV Leads Satellite Navigation Project In Collaboration With The South African National Space Agency

SSTL signs contract with OHB for second batch of Galileo payloads

CHIP TECH
Singapore Airlines first quarter net profit up 73%

EU should scrap airline emissions tax: IATA

International F-35 Fleet Begins Build Up At Eglin AFB

US 'confident' F-22 jet oxygen problems solved

CHIP TECH
New ultracapacitor delivers a jolt of energy at a constant voltage

UK research paves way to a scalable device for quantum information processing

Printed photonic crystal mirrors shrink on-chip lasers down to size

World's First Violet Nonpolar Vertical-Cavity Laser Technology

CHIP TECH
IGARSS begins in Munich

Digitalglobe And Geoeye Combine To Create A Global Leader

Lockheed Martin Marks Landsat 40th Anniversary

Earth-observing Camera Launches to International Space Station

CHIP TECH
Olympics: Bhopal victims organise protest Games

To clean up the mine, let fungus reproduce

NASA, Partners Announce Launch: Beyond Waste Innovators

Green plants reduce city street pollution up to eight times more than previously believed




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement