. Space Industry and Business News .




.
CHIP TECH
New knowledge about 'flawed' diamonds could speed the development of diamond-based quantum computers
by Staff Writers
Buffalo NY (SPX) Oct 12, 2011

Calculated energy surface of the 3E excited state of a diamond nitrogen-vacancy center as a function of distortions, a shape that is often referred to as a "warped Mexican hat."Credit: University at buffalo.

A University at Buffalo-led research team has established the presence of a dynamic Jahn-Teller effect in defective diamonds, a finding that will help advance the development of diamond-based systems in applications such as quantum information processing.

"We normally want things to be perfect, but defects are actually very important in terms of electronic applications," said Peihong Zhang, the UB associate professor of physics who led the study.

"There are many proposals for the application of defective diamonds, ranging from quantum computing to biological imaging, and our research is one step toward a better understanding of these defect systems."

The findings deal with diamonds whose crystal structure contains a particular defect: a nitrogen atom that sits alongside a vacant space in an otherwise perfect lattice made only of carbon.

At the point of the imperfection - the so-called "nitrogen-vacancy center" - a single electron can jump between different energy states. (The electron rises to a higher, "excited" energy state when it absorbs a photon and falls back to a lower energy state when it emits a photon).

Understanding how the diamond system behaves when the electron rises to an excited state called a "3E" state is critical to the success of such proposed applications as quantum computing.

The problem is that at the nitrogen-vacancy center, the 3E state has two orbital components with exactly the same energy - a configuration that is inherently unstable.

In response, the lattice "stabilizes" by rearranging itself. Atoms near the nitrogen-vacancy center move slightly, resulting in a new geometry that has a lower energy and is more stable.

This morphing is known as the Jahn-Teller effect, and until recently, the effect's precise parameters in defective diamonds remained unknown.

Zhang and colleagues from the Rensselaer Polytechnic Institute in Troy, N.Y., are the first to crack that mystery. Using UB's supercomputing facility, the Center for Computational Research, the team conducted calculations that reveal how, exactly, the diamond lattice distorts.

Their findings align with experimental results from other research studies, and shed light on important topics such as how long an excited electron at the nitrogen-vacancy center will stay coherently at a higher energy state.

The research was published online Sept. 30 in Physical Review Letters.

Related Links
University at Buffalo
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries






.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



CHIP TECH
Point defects in super-chilled diamonds may offer stable candidates for quantum computing bits
Washington DC (SPX) Oct 12, 2011
Diamond, nature's hardest known substance, is essential for our modern mechanical world - drills, cutters, and grinding wheels exploit the durability of diamonds to power a variety of industries. But diamonds have properties that may also make them excellent materials to enable the next generation of solid-state quantum computers and electrical and magnetic sensors. To further explore diam ... read more


CHIP TECH
German satellite hurtles towards Earth: officials

Asia powers PC rebound in computer gaming industry

Global computer sales slow as people turn to tablets

Northrop Grumman Demonstrates HAMMR "On-the-Move" Radar at Yuma Proving Grounds

CHIP TECH
Elbit Establishes Israeli MOD Comms Equipment Supply Upgrade and Maintenance Project

Boeing FAB-T Demonstrates High-Data-Rate Communications with AEHF Satellite Test Terminal

NRL TacSat-4 Launches to Augment Communications Needs

US Space Completes Study for USAF and Identifies Cost-Effective Ways to Procure MILSATCOM

CHIP TECH
Indian-French satellite put into orbit

Chinese rocket sends French telecom satellite into space

On-time preparations continue for Soyuz' milestone mission from French Guiana

US telecoms satellite reaches designated orbit

CHIP TECH
Electronic Compass Market Finds its Way to 73 Percent Growth in 2011

Raytheon Joins Industry Partners in Honoring USAF for Historic Contributions Through GPS

Russia's Soyuz-2.1B carrier rocket orbits Glonass satellite

Ruling Fuels Debate On Warrantless Cell Phone Tracking

CHIP TECH
Northrop Grumman Awarded Contract to Provide New Hybrid Navigation System for Cessna Business Jets

Embraer selects French component supplier

EU court backs bloc in airlines emissions fight

EU wins key round in carbon fight with airlines

CHIP TECH
Point defects in super-chilled diamonds may offer stable candidates for quantum computing bits

New knowledge about 'flawed' diamonds could speed the development of diamond-based quantum computers

Researchers Realize High-Power, Narrowband Terahertz Source at Room Temperature

Rice physicists move one step closer to quantum computer

CHIP TECH
Astrium signs new Pleiades contract

New program to expand, enhance use of LIDAR sensing technology

Indra Tries In Madrid And Seville Space Technology To Detect Heat Islands

RADA Selected for a SAR Development Program

CHIP TECH
N. Zealand PM warns oil slick ship at risk of break up

NZealand braces for break-up of oil slick ship

Filipino captain in N.Z. sea pollution crisis charged

New oil spills in N.Z's worst sea pollution crisis


.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement