Subscribe free to our newsletters via your
. Space Industry and Business News .




TECH SPACE
Cloaking device hides across continuous range of angles
by Staff Writers
Rochester NY (SPX) Nov 20, 2014


University of Rochester Ph.D. student Joseph Choi is pictured with a multidirectional "perfect paraxial" cloak using four lenses. Image courtesy Adam Fenster and University of Rochester.

Inspired perhaps by Harry Potter's invisibility cloak, scientists have recently developed several ways--some simple and some involving new technologies--to hide objects from view. The latest effort, developed at the University of Rochester, not only overcomes some of the limitations of previous devices, but it uses inexpensive, readily available materials in a novel configuration.

"There've been many high tech approaches to cloaking and the basic idea behind these is to take light and have it pass around something as if it isn't there, often using high-tech or exotic materials," said John Howell, a professor of physics at the University of Rochester. Forgoing the specialized components, Howell and graduate student Joseph Choi developed a combination of four standard lenses that keeps the object hidden as the viewer moves up to several degrees away from the optimal viewing position.

"This is the first device that we know of that can do three-dimensional, continuously multidirectional cloaking, which works for transmitting rays in the visible spectrum," said Choi, a Ph.D. student at Rochester's Institute of Optics.

The details of the device are now published in the journal Optics Express.

Many cloaking designs work fine when you look at an object straight on, but if you move your viewpoint even a little, the object becomes visible, explains Howell. Choi added that previous cloaking devices can also cause the background to shift drastically, making it obvious that the cloaking device is present.

In order to both cloak an object and leave the background undisturbed, the researchers determined the lens type and power needed, as well as the precise distance to separate the four lenses.

To test their device, they placed the cloaked object in front of a grid background. As they looked through the lenses and changed their viewing angle by moving from side to side, the grid shifted accordingly as if the cloaking device was not there. There was no discontinuity in the grid lines behind the cloaked object, compared to the background, and the grid sizes (magnification) matched.

The Rochester Cloak can be scaled up as large as the size of the lenses, allowing fairly large objects to be cloaked. And, unlike some other devices, it's broadband so it works for the whole visible spectrum of light, rather than only for specific frequencies.

Their simple configuration improves on other cloaking devices, but it's not perfect. "This cloak bends light and sends it through the center of the device, so the on-axis region cannot be blocked or cloaked," said Choi.

This means that the cloaked region is shaped like a doughnut. He added that they have slightly more complicated designs that solve the problem. Also, the cloak has edge effects, but these can be reduced when sufficiently large lenses are used.

In their paper, Howell and Choi provide a mathematical formalism for this type of cloaking that can work for angles up to 15 degrees, or more. They use a technique called ABCD matrices that describes how light bends when going through lenses, mirrors, or other optical elements.

While their device is not quite like Harry Potter's invisibility cloak, Howell had some thoughts about potential applications, including using cloaking to effectively let a surgeon "look through his hands to what he is actually operating on," he said. The same principles could be applied to a truck to allow drivers to see through blind spots on their vehicles.

Howell became interested in creating simple cloaking devices with off-the-shelf materials while working on a holiday project with his children. Together with his 14 year-old son and Choi, he recently published a paper about some of the possibilities, and also demonstrated simple cloaking with mirrors, like magicians would use, in a brief video.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Rochester
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
An efficient method to measure residual stress in 3D printed parts
Livermore CA (SPX) Nov 17, 2014
Lawrence Livermore National Laboratory researchers have developed an efficient method to measure residual stress in metal parts produced by powder-bed fusion additive manufacturing. This 3D printing process produces metal parts layer by layer using a high-energy laser beam to fuse metal powder particles. When each layer is complete, the build platform moves downward by the thickness of one ... read more


TECH SPACE
U.S. supplies Ukraine with counter-mortar radar systems

Versatile bonding for lightweight components

Cloaking device hides across continuous range of angles

A new approach to the delivery of satellites to orbit

TECH SPACE
Harris Corporation supplying Falcon III radios to Canadian military

GenDyn Canada contracted to connect military to WGS system

Northrop Grumman continues Joint STARS sustainment services

Harris Corporation opens engineering support facility

TECH SPACE
Elon Musk unveils 'drone ship' and 'x-wing' fins for rockets via Twitter

Russian Rocket Supply for Satellites Launches Continues

China launches Yaogan-24 remote sensing satellite

Soyuz Installed at Baikonur, Expected to Launch Wednesday

TECH SPACE
Russia to place global navigation stations in China

Telit Introduces Jupiter SL871-S GPS Module

Galileo satellite set for new orbit

KVH Receives Order for Military Navigation Systems

TECH SPACE
NASA Seeks Comments on Possible Airship Challenge

Air Ops Lab Answering Big Questions About Future of Air Travel

Britain, Norway order F-35 aircraft

Offsets may delay Korea's decision on buying aerial refulers

TECH SPACE
Giving LEDs a cozy, warm glow

Inorganic-based laser lift-off enables flexible electronics

Magic tricks created using artificial intelligence for the first time

Researchers create and control spin waves for enhanced data processing

TECH SPACE
"Ferrari of space' yields best map of ocean currents

NASA Computer Model Provides a New Portrait of Carbon Dioxide

NASA's New Wind Watcher Ready for Weather Forecasters

GOES-S Satellite EXIS Instrument Passes Final Review

TECH SPACE
European urbanites breathing highly polluted air: report

Cut the salt: Green solutions for highway snow and ice control

Study: Six toxic flame retardants found in humans

India sending 'chilling message' on environment: Greenpeace




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.