Subscribe free to our newsletters via your
. Space Industry and Business News .




CHIP TECH
Clearing a path for electrons in polymers: Closing in on the speed limits
by Staff Writers
Cambridge, UK (SPX) Nov 06, 2014


This is a high performance semiconducting polymer with an amorphous structure. Highlighted in yellow is a single chain demonstrating negligible backbone torsion. Image courtesy Deepak Venkateshvaran/Mark Nikolka.

Researchers from the University of Cambridge have identified a class of low-cost, easily-processed semiconducting polymers which, despite their seemingly disorganised internal structure, can transport electrons as efficiently as expensive crystalline inorganic semiconductors.

In this new polymer, about 70% of the electrons are free to travel, whereas in conventional polymers that number can be less than 50%. The materials approach intrinsic disorder-free limits, which would enable faster, more efficient flexible electronics and displays. The results are published today (5 November) in the journal Nature.

For years, researchers have been searching for semiconducting polymers that can be solution processed and printed - which makes them much cheaper - but also retain well-defined electronic properties. These materials are used in printed electronic circuits, large-area solar cells and flexible LED displays.

However, a major problem with these materials - especially after they go through a messy wet coating, fast-drying printing process - is that they have an internal structure more like a bowl of spaghetti than the beautifully ordered crystal lattice found in most electronic or optoelectronic devices.

These nooks and crannies normally lead to poorer performance, as they make ideal places for the electrons which carry charge throughout the structure to become trapped and slowed down.

Polymer molecules consist of at least one long backbone chain, with shorter chains at the sides. It is these side chains which make conjugated polymers easy to process, but they also increase the amount of disorder, leading to more trapped electrons and poorer performance.

Now, the Cambridge researchers have discovered a class of conjugated polymers that are extremely tolerant to any form of disorder that is introduced by the side chains.

"What is most surprising about these materials is that they appear amorphous, that is very disordered, at the microstructural level, while at the electronic level they allow electrons to move nearly as freely as in crystalline inorganic semiconductors," said Mark Nikolka, a PhD student at the University's Cavendish Laboratory and one of the lead authors of the study .

Using a combination of electrical and optical measurements combined with molecular simulations, the team of researchers led by Professor Henning Sirringhaus were able to measure that, electronically, the materials are approaching disorder-free limits and that every molecular unit along the polymer chain is able to participate in the transport of charges.

"These materials resemble tiny ribbons of graphene in which the electrons can zoom fast along the length of the polymer backbone, although not yet as fast as in graphene," said Dr Deepak Venkateshvaran, the paper's other lead author.

"What makes them better than graphene, however, is they are much easier to process, and therefore much cheaper."

The researchers plan to use these results to provide molecular design guidelines for a wider class of disorder-free conjugated polymers, which could open up a new range of flexible electronic applications. For example, these materials might be suitable for the electronics that will be needed to make the colour and video displays that are used in smartphones and tablets more lightweight, flexible and robust.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Cambridge
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
Saving lots of computing capacity with a new algorithm
Walferdange, Luxembourg (SPX) Oct 31, 2014
The control of modern infrastructure such as intelligent power grids needs lots of computing capacity. Scientists of the Interdisciplinary Centre for Security, Reliability and Trust (SnT) at the University of Luxembourg have developed an algorithm that might revolutionise these processes. With their new software the SnT researchers are able to forego the use of considerable amounts of computing ... read more


CHIP TECH
ORNL materials researchers get first look at atom-thin boundaries

From earphones to jet engines, 3D printing takes off

ESA space ferry moves ISS to avoid debris

EIAST and AUS launch UAE's first CubeSat Mission Nayif-1

CHIP TECH
Central Asian country orders Harris tactical radios

Canadian military receiving satellite-on-the-move communications system

Canadian military communications getting upgrade

Russia to Orbit 9 MilCom Satellites by 2020

CHIP TECH
Soyuz Installed at Baikonur, Expected to Launch Wednesday

Spaceflight partners with JAMSS to loft 8 CubeSats on JAXA mission

Arianespace signs contract with ELV for ten Vega launchers

NASA Completes Initial Assessment after Orbital Launch Mishap

CHIP TECH
A GPS from the chemistry set

No Galileo nav-sat launch for December - Arianespace

Russian Bank Offers 5 Billion Rubles for GLONASS

Galileo duo handed over in excellent shape

CHIP TECH
NASA tests airplane with flexible wings in cooperation with U.S. Air Force

China looking to develop big passenger plane

Airbus signs deal with Chinese firm for 100 planes

Indonesian Navy to receive Airbus helicopters

CHIP TECH
'Direct writing' of diamond patterns from graphite a potential technological leap

Clearing a path for electrons in polymers: Closing in on the speed limits

New research lights the way to super-fast computers

Saving lots of computing capacity with a new algorithm

CHIP TECH
ADS boosts EO portfolio with the addition of DMC Data

Copernicus operations secured until 2021

IceBridge Flies Around the Pole

ECOSTRESS Will Monitor Plant Health

CHIP TECH
Beijing stamps out funeral fashion fires for APEC: report

Delhi chokes on toxic smog after festival of lights

Major breakthrough could help detoxify pollutants

US hid troop exposure to chemical agents in Iraq: report




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.