. Space Industry and Business News .




.
TECH SPACE
An efficient method for solving sound propagation in range-dependent ocean waveguides found
by Staff Writers
Beijing, China (SPX) Apr 12, 2012

The source is located at a range of 4 km and a depth of 100 m by the: (a) analytical solution at 25 Hz; (b) present model at 25 Hz; (c) analytical solution at 100 Hz; (d) present model at 100 Hz. Credit: Science China Press.

The coupled normal mode method is a powerful approach for solving range-dependent propagation problems in underwater acoustics. An important area of study is to improve stability and efficiency so as to be able to deal with complex scenarios in a realistic environment.

Professor LUO Wenyu and his group from the State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, set out to tackle this problem. After several years of innovative research, they have developed an accurate, efficient, and numerically stable coupled normal mode method to solve the range-dependent propagation problem.

Their work, entitled "A numerically stable coupled-mode formulation for acoustic propagation in range-dependent waveguides", was published in SCIENCE CHINA Physics, Mechanics and Astronomy. 2012, Vol. 55(4).

Underwater sound propagation in range-dependent waveguides is critical to many studies and applications in the area of underwater acoustics. Neglect of waveguide range-dependence may lead to significant prediction errors. A number of approaches have been developed for solving this problem.

Despite significant recent advances, problems such as intensive computation and instability remain unsolved. Therefore, the need for developing new approaches with better efficiency, stability, and accuracy is urgent.

In the method proposed by LUO et al., the direct global matrix (DGM) approach is applied. As is well-established, the primary advantage of the DGM approach is that it gives numerically stable solutions when there is evanescence across layers, and it does this without special numerical treatment.

Therefore, the proposed method is unconditionally stable. Furthermore, by introducing appropriately normalized range solutions, the overflow problem inherent in certain existing models is eliminated. In addition, general source conditions were put forward, which significantly extends the applicability of the proposed model compared to existing models.

To validate a range-dependent model, we have the following possible methods: comparison with analytical solutions, checking energy conservation and reciprocity and inter-model comparison. The proposed method is validated by comparison with the analytical solution to an ideal wedge benchmark problem.

Here, a range-dependent problem involving a wedge-shaped waveguide with pressure-release boundaries is analyzed. Since sound propagation towards the wedge apex will be completely backscattered due to perfectly reflecting boundaries, this test problem is an ideal benchmark for a full two-way solution to the wave equation.

The comparison indicates that the proposed model is highly accurate and numerically stable (as shown in the Figure). Furthermore, this method provides high computational efficiency. The execution time for the proposed model is less than 10 % of that of the COUPLE model, which is a widely used coupled normal mode model.

Note that although an ideal waveguide problem is used to validate the proposed method, the formulation presented also applies to realistic waveguides with penetrable bottoms and/or depth-variant sound speed profiles in water.

Implementation and promotion of this work will contribute significantly to the study of underwater sound propagation.

This research was partially supported by grants from the National Natural Science Foundation of China and the Knowledge Innovation Program of Chinese Academy of Sciences. The proposed method proves to be accurate, efficient, and numerically stable.

The researchers suggest their work be extended and applied to the study of three-dimensional effects, for instance, the horizontal refraction that is present in complex environments. This will have significant impact on the study of three-dimensional underwater sound propagation.

See article: Luo W Y, Yang C M, Qin J X, et al. A numerically stable coupled-mode formulation for acoustic propagation in range-dependent waveguides. SCIENCE CHINA Physics, Mechanics and Astronomy, 2012, 55(4): 572-588

Related Links
Science in China Press
Space Technology News - Applications and Research




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries






.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



TECH SPACE
Handover of Japan-built Radar to NASA
Greenbelt, MD (SPX) Apr 04, 2012
On March 30, the Japan Aerospace Exploration Agency (JAXA) officially handed off a new satellite instrument to NASA at Goddard Space Flight Center, Greenbelt, Md. The Dual-frequency Precipitation Radar (DPR) was designed and built by JAXA and Japan's National Institute of Information and Communications Technology (NICT). The DPR is one of two instruments that will fly aboard NASA's Core Ob ... read more


TECH SPACE
US sues Apple, publishers yield on e-book pricing

Instagram fans moan over slap in the Facebook

Sony straps on Internet-linked wristwatch

An efficient method for solving sound propagation in range-dependent ocean waveguides found

TECH SPACE
Fourth Boeing-built WGS Satellite Accepted by USAF

Raytheon to Continue Supporting Coalition Forces' Information-Sharing Computer Network

Northrop Grumman Wins Contract for USAF Command and Control Modernization Program

TacSat-4 Enables Polar Region SatCom Experiment

TECH SPACE
Dragon Expected to Set Historic Course

NASA Awards Launch Contract For Goes-R And Goes-S Missions

Spy satellite-carrying rocket blasts off

Orbital Receives Order for Minotaur I Space Launch Vehicle From USAF

TECH SPACE
Galileo satellites intensify competition on the market of navigation

Hardware 'bug' hits TomTom nav devices

How interstellar beacons could help future astronauts find their way across the universe

ISS Keeps Watch on World's Sea Traffic

TECH SPACE
EU plays down financial impact of carbon tax on airlines

Airborne prayers problem solved for tech-savvy Muslims

Engine failure forces Cathay jet to turn back

China Southern committed to Airbus orders: report

TECH SPACE
Chips as mini Internets

Researcher Finds Faster, Cheaper Way To Cool Electronic Devices

Opening the gate to robust quantum computing

Controlling quantum tunneling with light

TECH SPACE
ITT Exelis delivers imaging system for next-generation, high-resolution GeoEye-2 satellite

Biggest environment satellite goes silent

NASA Views Our Perpetual Ocean

NASA Sees New Salt in an Ancient Sea

TECH SPACE
Black carbon ranked number two climate pollutant by US EPA

35,000 gallons of prevention

State of the planet

Oil from Deepwater Horizon disaster entered food chain in the Gulf of Mexico


Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement