Space Industry and Business News  
A New Satellite Remote Sensing Tool For Improving Agricultural Land Use Observation

The investigations run in Morocco on parcels of wheat in particular showed that evapotranspiration from the plant cover, the principal factor in water loss, could be evaluated with a margin of error of between 10 and 20%.
by Staff Writers
Paris, France (FAO) Jun 06, 2008
Data from the US Food and Agriculture Organization indicates that annually 2500 km3 of freshwater are used for agricultural production, which amounts to 70% of the water resources the whole of humanity consumes in a year.

With the global population continuing to grow at a high pace, it is essential to optimize the use of water resources and to increase agricultural production in view of the prospect of having to feed 8 billion humans in 2030.

Scientists have for many years been using remote-sensing satellite observations to improve water balance and farming yield assessment on large geographical scales (at the level of irrigated agriculture areas, catchment basins and so on).

Until quite recently, scientists had two different observation methods available for doing that: wide field-of-view sensors (TERRA-MODIS or SPOT-VEGETATION), which allowed daily observation of the entire globe but with a resolution on the kilometric scale, generally extending far over that of one parcel of crops, or decametre-scale-resolution sensors (SPOT, Landsat, ASTER), which can yield only one or two observations per month.

Since 2004, the Taiwanese satellite FORMOSTAT-2 has been in operation, combining the functional features of these two observation techniques, albeit without providing an exhaustive cover of the continents.

It gives the possibility for daily observation of small areas of around 500 km at a spatial resolution of about 8 metres.

Research conducted by an IRD team at the 'Centre d'Etudes Spatiales de la Biosph�re' at Toulouse, using images taken by FORMOSAT-2, gave the opportunity to study two agricultural areas where farmers make extensive use of irrigation: the Tensift Plain around Marrakech in the centre of Morocco, and the Yaqui Valley in the State of Sonora in North-West Mexico.

In these agricultural areas, irrigated cultivation of cereals, fruit trees and vegetables is practised over several thousand square kilometres.

This activity draws on limited water resources, mainly coming from precipitation received by the nearby mountain ranges: the Moroccan High-Atlas in the case of the Tensift Plain, the western Sierra Madre for the Yaqui Valley.

Both regions have an arid climate: average rainfall is 200 mm per year. But the water demand is seven times as high (the potential evapotranspiration of the plant cover is about 1500 mm/year). It is therefore essential to portion off the water as equitably as possible, according to the needs of the different types of crops that make up the agricultural landscape.

For these two areas, the study demonstrated all the potential capabilities of the new imagery technique with its high spatio-temporal resolution. With the support of CNES, the satellite FORMOSAT-2 was used to obtain time series of images, from November to May of the following year, that is throughout one entire farming season, at the rate of one shot every 5 days.

Processing of the resulting satellite data first helped compile land use maps (including crop rotation and succession patterns) with an excellent degree of discrimination between the different crop types. The availability of a large set of observations also allowed detailed monitoring of the plant cover with time, achieved by determination of changes in reflectance, the proportion of the light reflected by the land surface.

These measurements and associated vegetation indices gave the bases for determining the variables that describe the state of the soil-plant system such as the degree of land plant cover or the green leaf area index: a reliable index for vegetation, a figure below 0.15 corresponding to bare soil whereas one of over 0.70 characterizes a crop that is on the point of ripening (see the series of satellite images).

This detailed and practically continuous description of the plant cover made it possible to improve yield assessments and modelling of water transfer between soil, vegetation and atmosphere. The investigations run in Morocco on parcels of wheat in particular showed that evapotranspiration from the plant cover, the principal factor in water loss, could be evaluated with a margin of error of between 10 and 20%.

Moreover, the plant biomass (dry above-ground phytomass) and grain yields could be estimated to an accuracy of about 25% at parcel scale. In conclusion, this observation technique opens up the possibility to track the various successive operations (sowing, ploughing, irrigation, harvest and so on) effected as an agricultural season progresses.

Making sets of such data available for local agencies responsible for agro-environmental management should facilitate the reorientation of irrigation rapidly towards the crop parcels where it is most needed. In addition, it also makes it possible to adapt and improve all the information and advice issued to farmers and thus enable them to make significant improvements to their cultivation practices.

1. This research work was conducted as part of the SudMed and MedMex programmes (IRD-CESBIO, Toulouse), in conjunction with the Faculte des Sciences Semlalia of Marrakech, the Office Regional de Mise en Valeur Agricole of Haouz (Morocco) and the University and Technological Institute of Sonora (Mexico). It was financed by the European Commission, Cooperation Universitaire Franco-Marocaine and French national space research programmes (INSU and CNES). The FORMOSAT-2 image series were made available by the NSPO and processed in the framework of an agreement between the CNES, the NSPO and SPOT-IMAGE.

Related Links
Institut de Recherche Pour le Developpement
Earth Observation News - Suppiliers, Technology and Application



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


EarthCARE Earthcare Satellite Contract Signed
Berlin, Germany (SPX) Jun 06, 2008
The European Space Agency and Astrium GmbH has signed a contract worth 263 million euros to provide the EarthCARE satellite, the sixth Earth Explorer mission of ESA's Living Planet Programme. As prime contractor, Astrium GmbH is responsible for the satellite's design, development and integration.







  • Analysis: Crackdown on domain name crooks
  • Pacific students lagging in computer age: researcher
  • Icahn moves to replace Yahoo board, restart Microsoft talks
  • Intelsat And Panasonic To Bring Broadband Service To The Skies

  • GLAST Blast Off Delayed Until At Least June 11
  • Independent Panel To Investigate Ariane 5 Software Glitch
  • NASA sets Thursday for GLAST launch
  • Two Ariane 5s Are Readied For Launches In May And June

  • China's new jumbo-jet firm no threat to Airbus, Boeing: state media
  • China unveils new jumbo jet company: report
  • NASA And JAXA To Conduct Joint Research On Sonic Boom Modeling
  • Analysis: Can airplanes go green?

  • Raytheon To Provide Army With New Wideband Receiver Suites
  • Lockheed Martin Team Delivers Flight Software For Next Missile Warning Satellite
  • Keeping The Military Fully Networked And Online
  • Raytheon Tests Distributed Common Ground System Block 10.2 System

  • Paralysed man takes a walk in virtual world
  • Study finds best times for radio signals
  • Self-Repairing Aircraft Could Revolutionize Aviation Safety
  • US, China Space Debris Still Orbiting Earth

  • Globalstar AppointS Thomas Colby Chief Operating Officer
  • SES AMERICOM Announces Change In Executive Management
  • Bill Flynn Joins Americom Government Services to Lead Navy Programs
  • NASA names science directorate deputy

  • EarthCARE Earthcare Satellite Contract Signed
  • Northrop Grumman To Modify CERES Sensor For NPOESS Prep Mission To Improve Climate Data Payload
  • ISRO To Release Extensive Satellite Imagery By Year End
  • GeoEye Gets More Money From US

  • Lockheed Martin Launches GMLRS Rocket From HIMARS With GPS-Aided Fire Control
  • Trimble Introduces GNSS Reference Sensor For Infrastructure And Network Applications
  • Universal Receiver Tester Offers Innovative GPS Test And Simulation Capabilities
  • Kyocera Wireless Announces Brew Support And Developer Tools For New M2M Modules

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement