Free Newsletters - Space News - Defense Alert - Environment Report - Energy Monitor
. Space Industry and Business News .




TECH SPACE
World's most powerful X-ray laser beam refined to scalpel precision
by Staff Writers
Stanford CA (SPX) Aug 17, 2012


Part of the SLAC team who worked on self-seeding is shown alongside the hardware in the LCLS Undulator Hall. They are (from left to right) John Amann, Henrik Loos, Jerry Hastings and Jim Welch. Credit: Photo by Matt Beardsley, SLAC National Accelerator Laboratory.

With a thin sliver of diamond, scientists at the U.S. Department of Energy's (DOE) SLAC National Accelerator Laboratory have transformed the Linac Coherent Light Source (LCLS) into an even more precise tool for exploring the nanoworld. The improvements yield laser pulses focused to higher intensity in a much narrower band of X-ray wavelengths, and may enable experiments that have never before been possible.

In a process called "self-seeding," the diamond filters the laser beam to a single X-ray color, which is then amplified. Like trading a hatchet for a scalpel, the advance will give researchers more control in studying and manipulating matter at the atomic level and will deliver sharper images of materials, molecules and chemical reactions.

"The more control you have, the finer the details you can see," said Jerry Hastings, a SLAC scientist and co-author on the research, published this week in Nature Photonics.

"People have been talking about self-seeding for nearly 15 years. The method we incorporated at SLAC was proposed in 2010 by Gianluca Geloni, Vitali Kocharyan and Evgeni Saldin of the European XFEL and DESY research centers in Germany. When our team from SLAC and Argonne National Laboratory built it, we were surprised by how simple, robust and cost-effective the engineering turned out to be."

Hastings added that laboratories around the world are already planning to incorporate this important advance into their own X-ray laser facilities.

Self-seeding has the potential to produce X-ray pulses with significantly higher intensity than the current LCLS performance. The increased intensity in each pulse could be used to probe deep into complex materials to help answer questions about exotic substances like high-temperature superconductors or intricate electronic states like those found in topological insulators.

The LCLS generates its laser beam by accelerating bunches of electrons to nearly the speed of light and setting them on a zig-zag path with a series of magnets. This forces the electrons to emit X-rays, which are gathered into laser pulses that are a billion times brighter than any available before, and fast enough to scan samples in quadrillionths of a second.

Without self-seeding these X-ray laser pulses contain a range of wavelengths (or colors) in an unpredictable pattern, not all of which experimenters can use. Until now, creating a narrower wavelength band at LCLS meant subtracting the unwanted wavelengths, resulting in a substantial loss of intensity.

To create a precise X-ray wavelength band and make the LCLS even more "laser-like," researchers installed a slice of diamond crystal halfway down the 130-meter bank of magnets where the X-rays are generated.

Producing the narrower wavelength band is just the beginning. "The resulting pulses could pack up to 10 times more intensity when we finish optimizing the system and add more undulators," said Zhirong Huang, a SLAC accelerator physicist and co-author, who has been a major contributor to the project.

LCLS has already begun accepting proposals to use self-seeding for future experiments.

The first tests of the LCLS self-seeding system have generated intense excitement among scientists the world over. Representatives from other X-ray laser facilities, including Swiss FEL, SACLA in Japan and the European XFEL, came to help, and also learn how to implement it at their own sites.

According to Paul Emma, a co-author who was a key figure in the original commissioning of the LCLS and in implementing self-seeding, "the entire group of observers was smiling from ear to ear." Emma, now working at Lawrence Berkeley National Lab, has a history of making tough jobs look easy, but he would only say, "I was very happy to see it work."

The team included collaborators from the Technical Institute for Superhard and Novel Carbon Materials in Troitsk, Russia, which supplied the diamond filter, and Argonne National Laboratory, which designed the vacuum chamber to house it and the precision motion controls to adjust it. The research was supported by the DOE's Office of Science.

.


Related Links
DOE/SLAC National Accelerator Laboratory
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECH SPACE
Speed and power of X-ray laser helps unlock molecular mysteries
Washington DC (SPX) Jul 31, 2012
By outrunning a laser's path of destruction, an international research team has created 3D images of fragile but biologically important molecules inside protein nanocrystals. Using the Linac Coherence Light Source (LCLS), a powerful X-ray laser at the SLAC National Accelerator Laboratory in Menlo Park, Calif., the scientists fired femtosecond (one quadrillionth of a second) bursts of light at a ... read more


TECH SPACE
Micro-thruster could move small satellites

World's most powerful X-ray laser beam refined to scalpel precision

Apple stock hits new high on gadget rumors

Russia: Wayward rocket no threat to ISS

TECH SPACE
Raytheon unveils cross domain strategy to securely access information via mobile devices

NATO Special Forces Taps Mutualink for Global Cross Coalition Communications

Northrop Grumman Demonstrates Integrated Receiver Circuit Under DARPA Program

Boeing Receives 10th WGS Satellite Order from USAF

TECH SPACE
Pre launch verifications are underway for next Soyuz mission

GSAT-10 "spreads its wings" in preparation for Arianespace's next Ariane 5 launch

The Spaceport moves into action for Arianespace's next Soyuz mission to orbit two Galileo satellites

Sea Launch Prepares for the Launch of Intelsat 21

TECH SPACE
A GPS in Your DNA

Next Galileo satellite reaches French Guiana launch site

Raytheon completes GPS OCX iteration 1.4 Critical Design Review

Mission accomplished, GIOVE-B heads into deserved retirement

TECH SPACE
Taiwan denies it still seeks F-16C-D jets

Boeing Flies X-48C Blended Wing Body Research Aircraft

Embraer, Cobham ink KC-390 tanker deal

Hong Kong Airlines considering cancelling A380 order

TECH SPACE
IBM buys flash memory firm

NIST's speedy ions could add zip to quantum computers

NASA Goddard Team to Demonstrate Miniaturized Spectrometer-on-a-Chip

Dutch firm ASML clinches 1.1 bn euro deal with Taiwan's TSMC

TECH SPACE
Proba-1 microsat snaps Olympic neighbourhood

Sparse microwave imaging: A new concept in microwave imaging technology

NASA Finalizes Contracts for NOAA's JPSS-1 Mission

MSG-3, Europe's latest weather satellite, delivers first image

TECH SPACE
Italians protest against pollution from steelworks

Vietnam, US begin historic Agent Orange cleanup

Worldwide increase of air pollution

Philippine gold mine suspended over spill




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement