Subscribe free to our newsletters via your
. Space Industry and Business News .




CHIP TECH
Size matters in the giant magnetoresistance effect in semiconductors
by Staff Writers
Atlanta GA (SPX) Oct 22, 2013


The researchers found that the change in the resistance or resistivity with the magnetic field depends on the size of the device.

In a paper appearing in Nature's Scientific Reports, Dr. Ramesh Mani, professor of physics and astronomy at Georgia State University, reports that a giant magnetoresistance effect depends on the physical size of the device in the GaAs/AlGaAs semiconductor system.

Giant magnetoresistance indicates a large change in the electrical resistance with the application of a small magnetic field. This effect can be used to detect the presence of small magnetic fields. Magnetic sensors based on this concept are used to read out information stored in magnetic particles on rotating platters in computer hard disks.

Other types of magnetic sensors are also used in brushless electric motors within cooling fans in computers, and as wheel speed sensors in some automobiles. Semiconductors are materials with electrical characteristics that fall between those of insulators and metals. Such materials are widely used, especially in electronics.

In research that is supported by grants from the U.S. Department of Energy and the U.S. Army Research Office, Mani studied the magnetoresistance in flat, very thin sheets of electrons in the ultra high quality GaAs/AlGaAs semiconductor with his colleagues Annika Kriisa from Emory University and Werner Wegscheider from the ETH-Zurich in Switzerland.

The researchers found that the change in the resistance or resistivity with the magnetic field depends on the size of the device. They demonstrated that, under the application of a magnetic field, wide devices develop a smaller and quicker change, while small devices develop a bigger but slower change in the resistivity. The resistance or resistivity of a material to the flow of electricity is a technologically important property, especially in semiconductors.

In a typical semiconductor, the disorder is so strong that electrons undergo many collisions over a short distance - distance much less than millimeters. Then, the edges or walls of the device have no influence on measured properties because the electrons lose memory of one edge or wall by the time they get to another.

The strong sensitivity of the magnetoresistance to the size of the device observed in this research indicates that scattering with the walls of the device might be making a substantial contribution to electron scattering. This result testifies to the high quality of the semiconductor used in this research, produced by Prof. Werner Wegscheider at ETH-Zurich in Switzerland.

This research team developed a model to understand the observations and deduced that when the semiconductor system becomes of even better quality, the change in the resistance under the application of a magnetic field will become even bigger. Indeed, the change might become so big that the resistance vanishes entirely in the small magnetic field.

.


Related Links
Georgia State University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





CHIP TECH
CU, MIT breakthrough in photonics could allow for faster and faster electronics
Boulder CO (SPX) Oct 04, 2013
A pair of breakthroughs in the field of silicon photonics by researchers at the University of Colorado Boulder, the Massachusetts Institute of Technology and Micron Technology Inc. could allow for the trajectory of exponential improvement in microprocessors that began nearly half a century ago-known as Moore's Law-to continue well into the future, allowing for increasingly faster electronics, fr ... read more


CHIP TECH
NSF Awards $12 Million to SDSC to Deploy "Comet" Supercomputer

Rice scientists create a super antioxidant

Cracked metal, heal thyself

'Walking droplets'

CHIP TECH
Lockheed Martin To Continue In Theater Support for Real-Time Surveillance

Lockheed Martin to Deliver Communications and Transmission Services to US Army

Raytheon demonstrates new protected tactical waveform on a small, lightweight, low-cost modem

Northrop Grumman Delivers First Tactical IBCS Components

CHIP TECH
Astrium awarded three new contracts by ESA for Ariane 6 and Ariane 5 ME launchers

Sounding Rocket Calibrates NASA's SDO Instrument

Russia Readies Proton Rocket for October 20 Launch

Sunshield preparations bring Gaia closer to deep-space Soyuz launch

CHIP TECH
Software Uses Cyborg Swarm To Map Unknown Environs

DLR, Thales Alenia Space and SES Develop Innovative Space-Based Air Traffic Control Monitoring System

Boeing, China Southern and China Aviation Authorities Establish Precision Navigation Procedures

Plan maps development of China's sat-nav industry

CHIP TECH
EU revives airline carbon tax proposal

In Israel, lingering bitterness over a failed fighter project

Brazil aims to build advanced fighter jets with Russia

Northrop Grumman to Upgrade French Navy E-2C Hawkeye Fleet

CHIP TECH
Size matters in the giant magnetoresistance effect in semiconductors

CU, MIT breakthrough in photonics could allow for faster and faster electronics

Researchers demonstrate 'accelerator on a chip'

Spirals of Light May Lead to Better Electronics

CHIP TECH
Satellites proposed as way to bring early detection of wildfires

CASIS Issues Request for Proposals: Remote Sensing From the ISS

Nation puts geospatial data system on the map

Indra Leads The European G-Sextant Earth Observation Project

CHIP TECH
Russian court brands Baikal protection group 'foreign agent'

Outdoor air pollution a leading cause of cancer

'Toxic bomb' ticks on Maldives rubbish island

Pulp friction cleans up 'Brockovich' chemical




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement