. Space Industry and Business News .




.
CHIP TECH
Sharpening the lines could lead to even smaller features and faster microchips
by David L. Chandler for MIT News
Boston MD (SPX) Dec 16, 2011

File image.

The microchip revolution has seen a steady shrinking of features on silicon chips, packing in more transistors and wires to boost chips' speed and data capacity. But in recent years, the technologies behind these chips have begun to bump up against fundamental limits, such as the wavelengths of light used for critical steps in chip manufacturing.

Now, a new technique developed by researchers at MIT and the University of Utah offers a way to break through one of these limits, possibly enabling further leaps in the computational power packed into a tiny sliver of silicon.

Postdoc Trisha Andrew PhD '10 of MIT's Research Laboratory of Electronics, a co-author of this paper as well as a 2009 paper that described a way of creating finer lines on chips, says this work builds on that earlier method.

But unlike the earlier technique, called absorbance modulation, this one allows the production of complex shapes rather than just lines, and can be carried out using less expensive light sources and conventional chip-manufacturing equipment.

"The whole optical setup is on a par with what's out there" in chip-making plants, she says. "We've demonstrated a way to make everything cheaper."

As in the earlier work, this new system relies on a combination of approaches: namely, interference patterns between two light sources and a photochromic material that changes color when illuminated by a beam of light.

But, Andrew says, a new step is the addition of a material called a photoresist, used to produce a pattern on a chip via a chemical change following exposure to light. The pattern transferred to the chip can then be etched away with a chemical called a developer, leaving a mask that can in turn control where light passes through that layer.

While traditional photolithography is limited to producing chip features larger than the wavelength of the light used, the method devised by Andrew and her colleagues has now been shown to produce features one-eighth that size.

Others have achieved similar sizes before, Andrew says, but only with equipment whose complexity is incompatible with quick, inexpensive manufacturing processes.

The new system uses "a materials approach, combined with sophisticated optics, to get large-scale patterning," she says. And the technique should make it possible to reduce the size of the lines even further, she says.

The key to beating the limits usually imposed by the wavelength of light and the size of the optical system is an effect called stimulated emission depletion imaging, or STED, which uses fluorescent materials that emit light when illuminated by a laser beam. If the power of the laser falls below a certain level, the fluorescence stops, leaving a dark patch.

It turns out that by carefully controlling the laser's power, it's possible to leave a dark patch much smaller than the wavelength of the laser light itself. By using the dark areas as a mask, and sweeping the beam across the chip surface to create a pattern, these smaller sizes can be "locked in" to the surface.

That process has previously been used to improve the resolution of optical microscopes, but researchers had thought it inapplicable to photolithographic chip making.

The innovation by this MIT and Utah team was to combine STED with the earlier absorbance-modulation technique, replacing the fluorescent materials with a special polymer whose molecules change shape in response to specific wavelengths of light.

In addition to enabling the manufacture of chips with finer features, the technique could also be used in other advanced technologies, such as the production of photonic devices, which use patterns to control the flow of light rather than the flow of electricity. "It can be used for any process that uses optical lithography," Andrew says.

In addition to Andrew, the paper's authors include Rajesh Menon, formerly a research engineer at MIT and now an assistant professor of electrical engineering and computer science at Utah, and Utah postdoc Nicole Brimhall and graduate student Rajakumar Varma Manthena. The work was supported in part by grants from the U.S. Defense Advanced Research Projects Agency and the National Science Foundation.

A paper describing the process was published in the journal Physical Review Letters in November.

Related Links
MIT
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries






.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



CHIP TECH
New method for enhancing thermal conductivity could cool computer chips, lasers and other devices
Nashville TN (SPX) Dec 16, 2011
The surprising discovery of a new way to tune and enhance thermal conductivity - a basic property generally considered to be fixed for a given material - gives engineers a new tool for managing thermal effects in smart phones and computers, lasers and a number of other powered devices. The finding was made by a group of engineers headed by Deyu Li, associate professor of mechanical enginee ... read more


CHIP TECH
Stress causes clogs in coffee and coal

New eco-friendly foliar spray provides natural anti-freeze

Diamonds and dust for better cement

Cotton fabric cleans itself when exposed to ordinary sunlight

CHIP TECH
Satellite Tracking Specialist, Track24, wins Canadian Government Contract

Airman brings space to ground forces

Astrium achieves Initial System Acceptance on Yahsat programme

Northrop Grumman Awarded Microscale Power Conversion Contract

CHIP TECH
Arianespace selected to launch MEASAT-3b

AMOS-5 Communications Satellite Successfully Launched

Second Arianespace Soyuz rolled out for launch at Spaceport Kourou

O3b signs agreement with Arianespace for third Soyuz launch

CHIP TECH
Lockheed Martin Delivers GPS 3 Pathfinder Satellite to Denver on Schedule

Lightweight GPS tags help research track animals of all sizes

Russia to put two more Glonass satellites into operation

Germans join probe of mobile phone tracker

CHIP TECH
Cathay announces economy class upgrade

Airbus eyes Japan's budget carriers

AirAsia boss bullish on growth, eyes China, India

American Airlines slams 'rude' actor in plane row

CHIP TECH
Sharpening the lines could lead to even smaller features and faster microchips

Optical Fiber Innovation Could Make Future Optical Computers a 'SNAP'

New method for enhancing thermal conductivity could cool computer chips, lasers and other devices

Intel alliance will let chips chat at close range

CHIP TECH
NASA Gears Up for Airborne Study of Earth's Radiation Balance

Study Shows More Shrubbery in a Warming World

Astrium awarded Sentinel 5 Precursor contract

ESA selects Astrium to build Sentinel-5 Precursor satellite

CHIP TECH
Keeping our beaches safe

Christmas shopping hampered as Milan battles smog

Beijing under pressure to change pollution measuring

Many chemicals unproven to raise breast cancer risk


.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement