Subscribe free to our newsletters via your
. Space Industry and Business News .




CHIP TECH
New Technique May Open Up an Era of Atomic-scale Semiconductor Devices
by Staff Writers
Raleigh NC (SPX) May 24, 2013


To create a single layer of MoS2 on the substrate, the partial pressure must be higher than the vapor pressure. The higher the partial pressure, the more layers of MoS2 will settle to the bottom.

Researchers at North Carolina State University have developed a new technique for creating high-quality semiconductor thin films at the atomic scale - meaning the films are only one atom thick. The technique can be used to create these thin films on a large scale, sufficient to coat wafers that are two inches wide, or larger.

"This could be used to scale current semiconductor technologies down to the atomic scale - lasers, light-emitting diodes (LEDs), computer chips, anything," says Dr. Linyou Cao, an assistant professor of materials science and engineering at NC State and senior author of a paper on the work.

"People have been talking about this concept for a long time, but it wasn't possible. With this discovery, I think it's possible."

The researchers worked with molybdenum sulfide (MoS2), an inexpensive semiconductor material with electronic and optical properties similar to materials already used in the semiconductor industry. However, MoS2 is different from other semiconductor materials because it can be "grown" in layers only one atom thick without compromising its properties.

In the new technique, researchers place sulfur and molybdenum chloride powders in a furnace and gradually raise the temperature to 850 degrees Celsius, which vaporizes the powder. The two substances react at high temperatures to form MoS2. While still under high temperatures, the vapor is then deposited in a thin layer onto the substrate.

"The key to our success is the development of a new growth mechanism, a self-limiting growth," Cao says. The researchers can precisely control the thickness of the MoS2 layer by controlling the partial pressure and vapor pressure in the furnace. Partial pressure is the tendency of atoms or molecules suspended in the air to condense into a solid and settle onto the substrate. Vapor pressure is the tendency of solid atoms or molecules on the substrate to vaporize and rise into the air.

To create a single layer of MoS2 on the substrate, the partial pressure must be higher than the vapor pressure. The higher the partial pressure, the more layers of MoS2 will settle to the bottom.

If the partial pressure is higher than the vapor pressure of a single layer of atoms on the substrate, but not higher than the vapor pressure of two layers, the balance between the partial pressure and the vapor pressure can ensure that thin-film growth automatically stops once the monolayer is formed. Cao calls this "self-limiting" growth.

Partial pressure is controlled by adjusting the amount of molybdenum chloride in the furnace - the more molybdenum is in the furnace, the higher the partial pressure.

"Using this technique, we can create wafer-scale MoS2 monolayer thin films, one atom thick, every time," Cao says. "We can also produce layers that are two, three or four atoms thick."

Cao's team is now trying to find ways to create similar thin films in which each atomic layer is made of a different material. Cao is also working to create field-effect transistors and LEDs using the technique. Cao has filed a patent on the new technique.

The paper, "Controlled Scalable Synthesis of Uniform, High-Quality Monolayer and Few-layer MoS2 Films," was published online May 21 in Scientific Reports, a journal of the Nature Publishing Group. Lead author of the paper is NC State Ph.D. student Yifei Yu. Co-authors are Dr. Chun Li, a former postdoctoral researcher at NC State; Yi Liu, a laboratory manager at NC State; Liqin Su and Dr. Yong Zhang of the University of North Carolina at Charlotte. The research was funded by the U.S. Army Research Office.

.


Related Links
North Carolina State University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





CHIP TECH
Bright Future For Photonic Quantum Computers
Vienna, Austria (SPX) May 16, 2013
Harnessing the unique features of the quantum world promises a dramatic speed-up in information processing as compared to the fastest classical machines. Scientists from the Group of Philip Walther from the Faculty of Physics, University of Vienna succeeded in prototyping a new and highly resource efficient model of a quantum computer - the boson sampling computer. Quantum computers ... read more


CHIP TECH
Iron-platinum alloys could be new-generation hard drives

Computational tool translates complex data into simplified 2-dimensional images

3-D modeling technology offers groundbreaking solution for engineers

NASA Seeks High-Performance Spaceflight Computing Capabilities

CHIP TECH
US Navy And Lockheed Martin Deliver Secure Communications Satellite For Mobile Users

Making frequency-hopping radios practical

Northrop Grumman Proves Concept for New B-2 Satellite Communication System

US Navy and Lockheed Martin Deliver Newest Secure Communications Satellite for Mobile Users

CHIP TECH
O3b Networks Launcher and payload integration are underway at Kourou

Arianespace underscores strong partnership with Japan during Tokyo meetings

O3b Networks' initial satellite is fueled for Arianespace's upcoming Soyuz launch from the Spaceport

Ariane Flight VA214's launch vehicle marks a preparation milestone

CHIP TECH
NASA Builds Unusual Testbed for Analyzing X-ray Navigation Technologies

Pakistan adopts Chinese rival GPS satellite system

China's BeiDou satellite navigation system has broad commercial uses

Fourth Boeing GPS IIF Satellite Joins Constellation on Orbit

CHIP TECH
Air China says orders 100 Airbus A320 jets worth $8.8 bn

F-35B Completes First Vertical Takeoff

China clears Boeing 787s for nation's airlines: Boeing

Saab upgrading bid for Brazil FX-2 contest

CHIP TECH
New Technique May Open Up an Era of Atomic-scale Semiconductor Devices

Bright Future For Photonic Quantum Computers

New magnetic graphene may revolutionize electronics

Flawed Diamonds Promise Sensory Perfection

CHIP TECH
NASA's Landsat Satellite Looks for a Cloud-Free View

Google team captures Galapagos Island beauty for maps

NASA Helps Pinpoint Glaciers' Role in Sea Level Rise

New Animation Marks Arrival of NASA's LDCM Satellite to its Final Orbit

CHIP TECH
Frog once imported for pregnancy testing brought deadly amphibian disease to US

Hong Kong launches plan to tackle waste crisis

Nearly 1,000 protest against China chemical plant

Making gold green: New non-toxic method for mining gold




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement