Free Newsletters - Space News - Defense Alert - Environment Report - Energy Monitor
. Space Industry and Business News .




CHIP TECH
New Research Findings Open Door to Zinc-Oxide-based UV Lasers, LED Devices
by Staff Writers
Raleigh NC (SPX) Apr 28, 2013


To make laser and LED technologies, you need both "n-type" materials and "p-type" materials. N-type materials contain an abundance of free electrons. P-type materials have "holes" that attract those free electrons.

Researchers from North Carolina State University have solved a long-standing materials science problem, making it possible to create new semiconductor devices using zinc oxide (ZnO) - including efficient ultraviolet (UV) lasers and LED devices for use in sensors and drinking water treatment, as well as new ferromagnetic devices.

"The challenge of using ZnO to make these devices has stumped researchers for a long time, and we've developed a solution that uses some very common elements: nitrogen, hydrogen and oxygen," says Dr. Lew Reynolds, co-author of a paper describing the research and a teaching associate professor of materials science and engineering at NC State.

"We've shown that it can be done, and how it can be done - and that opens the door to a suite of new UV laser and LED technologies," says Dr. Judith Reynolds, a research scientist at NC State and lead author of the paper.

To make laser and LED technologies, you need both "n-type" materials and "p-type" materials. N-type materials contain an abundance of free electrons. P-type materials have "holes" that attract those free electrons.

But the holes in the p-type materials have a lower energy state, which means that electrons release their excess energy in the form of light as they travel from the n-type material to the p-type material. The shedding of excess energy at the so-called "p-n junction" is what produces light in lasers and LED devices.

Researchers have been interested in using ZnO to create these devices because ZnO produces UV light, and because ZnO can be used to make devices with relatively fewer unwanted defects than other UV emitters- which means the resulting lasers or LEDs would be more energy efficient.

However, researchers had been unable to consistently produce stable p-type materials out of ZnO. Now researchers have solved that problem by introducing a specific "defect complex," via a unique set of growth and annealing procedures, in the ZnO.

The defect complex looks different from a normal ZnO molecule. The zinc atom is missing and a nitrogen atom (attached to a hydrogen atom) substitutes for the oxygen atom. These defect complexes are dispersed throughout the ZnO material and serve as the "holes" that accept the electrons in p-type materials.

Not only does the research illustrate how to create p-type materials from ZnO, but the defect complex allows the ZnO p-n junction to function efficiently - and produce UV light - at room temperature.

The paper, "Shallow acceptor complexes in p-type ZnO" is published online in Applied Physics Letters. Lead author of the paper is Dr. Judith Reynolds, a research scientist at NC State. Co-authors include Drs. A. Mohanta and H.O. Everitt of the U.S. Army Aviation and Missile Research, Development and Engineering Center; Dr. John Muth, a professor of electrical and computer engineering at NC State; Dr. John Rowe, a research professor of physics at NC State; and Dr. David Aspnes, Distinguished University Professor of Physics at NC State. The research was supported by the Defense Advanced Research Projects Agency.

.


Related Links
North Carolina State University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





CHIP TECH
New Nanowire Structure Has Potential to Increase Semiconductor Applications
Cincinnati OH (SPX) Apr 28, 2013
New research led by University of Cincinnati physics professors Howard Jackson and Leigh Smith could contribute to better ways of harnessing solar energy, more effective air quality sensors or even stronger security measures against biological weapons such as anthrax. And it all starts with something that's 1,000 times thinner than the typical human hair - a semiconductor nanowire. UC's Ja ... read more


CHIP TECH
Vaterite: Crystal within a crystal helps resolve an old puzzle

Space debris problem now urgent - scientists

Nothing Bugs These NASA Aeronautical Researchers

US eases export rules on aerospace parts

CHIP TECH
Gilat to Equip IDF with SatTrooper-1000 Military Manpack

General Dynamics' WIN-T Increment 2, Soldiers' "On-the-Move" Network, Advances as 10th Mountain Division Trains for Deployment

Lockheed Martin Awarded Contract to Modernize U.S. Joint Theater Air Operations System

Boeing Delivers FAB-T Test Units to US Air Force

CHIP TECH
On the record with... Stephane Israel, Arianespace Chairman and CEO

Vega's three-satellite payload is integrated and ready for launch

NASA Seeks Innovative Suborbital Flight Technology Proposals

Stephane Israel named Chairman and CEO of Arianespace

CHIP TECH
Russia launches latest satellite in its global positioning system

Sat-nav warns London lorry drivers of cyclists

TomTom says sales fall, turning from navigation market

Northrop Grumman's Astro Aerospace Receives Follow-On Order for 48 More JIB Antennas for GPS III Satellites

CHIP TECH
Australia unveils its F-35 JSF 'Iron Bird'

China welcomes French president with Airbus deal

Multifunction Advanced Data Link Flight Tested For F-35 Program

Brazil drops plan to build AgustaWestland helicopter

CHIP TECH
New Research Findings Open Door to Zinc-Oxide-based UV Lasers, LED Devices

New Nanowire Structure Has Potential to Increase Semiconductor Applications

Scientists provide 'new spin' on emerging quantum technologies

Germanium made compatible

CHIP TECH
NASA's HyspIRI: Seeing the Forest and the Trees and More

Satrec Initiative of South Korea Continues Collaboration with UAE for DubaiSat-3 Program

Google says Street View data now take in 50 countries

DMCii increases downlink capacity with Svalbard ground station facilities

CHIP TECH
Researchers pinpoint how trees play role in smog production

Research Harnesses Solar-Powered Proteins to Filter Harmful Antibiotics from Water

European lawmakers tighten rules on ship-breaking industry

Albania to hold referendum on waste imports




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement