Free Newsletters - Space News - Defense Alert - Environment Report - Energy Monitor
. Space Industry and Business News .




CHIP TECH
A KAIST research team developed in vivo flexible large scale integrated circuits
by Staff Writers
Daejeon, South Korea (SPX) May 07, 2013


his shows: Top: In vivo flexible large scale integrated circuits (LSI); Bottom: Schematic of roll-to-roll printing of flexible LSI on large area plastics. Credit: KAIST. For a larger version of this image please go here.

A team led by Professor Keon Jae Lee from the Department of Materials Science and Engineering at KAIST has developed in vivo silicon-based flexible large scale integrated circuits (LSI) for bio-medical wireless communication.

Silicon-based semiconductors have played significant roles in signal processing, nerve stimulation, memory storage, and wireless communication in implantable electronics. However, the rigid and bulky LSI chips have limited uses in in vivo devices due to incongruent contact with the curvilinear surfaces of human organs.

Especially, artificial retinas recently approved by the Food and Drug Administration (refer to the press release of FDA's artificial retina approval) require extremely flexible and slim LSI to incorporate it within the cramped area of the human eye.

Although several research teams have fabricated flexible integrated circuits (ICs, tens of interconnected transistors) on plastics, their inaccurate nano-scale alignment on plastics has restricted the demonstration of flexible nano-transistors and their large scale interconnection for in vivo LSI applications such as main process unit (MPU), high density memory and wireless communication.

Professor Lee's team previously demonstrated fully functional flexible memory using ultrathin silicon membranes (Nano Letters, Flexible Memristive Memory Array on Plastic Substrates), however, its integration level and transistor size (over micron scale) have limited functional applications for flexible consumer electronics.

Professor Keon Jae Lee's team fabricated radio frequency integrated circuits (RFICs) interconnected with thousand nano-transistors on silicon wafer by state-of-the-art CMOS process, and then they removed the entire bottom substrate except top 100 nm active circuit layer by wet chemical etching.

The flexible RF switches for wireless communication were monolithically encapsulated with biocompatible liquid crystal polymers (LCPs) for in vivo bio-medical applications. Finally, they implanted the LCP encapsulated RFICs into live rats to demonstrate the stable operation of flexible devices under in vivo circumstances.

Professor Lee said, "This work could provide an approach to flexible LSI for an ideal artificial retina system and other bio-medical devices. Moreover, the result represents an exciting technology with the strong potential to realize fully flexible consumer electronics such as application processor (AP) for mobile operating system, high-capacity memory, and wireless communication in the near future."

This result was published in the May online issue of the American Chemical Society's journal, ACS Nano (In vivo Flexible RFICs Monolithically Encapsulated with LCP). They are currently engaged in commercializing efforts of roll-to-roll printing of flexible LSI on large area plastic substrates.

See a short clip about this work at Youtube Link: Fabrication process for flexible LSI for flexible display, wearable computer and artificial retina for in vivo biomedical application

.


Related Links
The Korea Advanced Institute of Science and Technology (KAIST)
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





CHIP TECH
New NIST measurement tool is on target for the fast-growing MEMS industry
Washington DC (SPX) May 09, 2013
As markets for miniature, hybrid machines known as MEMS grow and diversify, the National Institute of Standards and Technology (NIST) has introduced a long-awaited measurement tool that will help growing numbers of device designers, manufacturers and customers to see eye to eye on eight dimensional and material property measurements that are key to device performance. The NIST-developed te ... read more


CHIP TECH
World's First Full Color 3D Desktop Printer

EA inks deal for Star Wars videogames

Dell buys cloud software firm Enstratius

General Dynamics Team to Develop Second Radar System for the US Army Range Radar Replacement Program

CHIP TECH
Department of Defense looking to allow Apple, Samsung devices

DARPA Seeks Clean-Slate Ideas For Mobile Ad Hoc Networks

Astrium's secure milsatcoms now cover the world

Gilat to Equip IDF with SatTrooper-1000 Military Manpack

CHIP TECH
ESA's Vega launcher scores new success with Proba-V

European Vega rocket launch delayed due to weather

First of Four Sounding Rockets Launched from the Marshall Islands

Checkout is underway with O3b Networks' four satellites to be orbited on the next Arianespace Soyuz launch

CHIP TECH
Turn your satnav idea into business

NIST demonstrates transfer of ultraprecise time signals over a wireless optical channel

Spatial Dual Offers Dual Antenna For GNSS/INS

Raytheon completes second launch exercise for next generation GPS satellites

CHIP TECH
Taiwan wavers on F-16 deal

Nigeria fighter jet crashes in Niger, two killed

Iraq signs $830 million deal for more F-16s

Bird fossil sheds light on how swift and hummingbird flight came to be

CHIP TECH
A KAIST research team developed in vivo flexible large scale integrated circuits

Intel revamps chipsets in new mobile push

One step closer to a quantum computer

New Method Joins Gallium Nitride and Diamond for Better Thermal Management

CHIP TECH
Vietnam, with French help, set to launch remote sensing satellite

World's major development banks look closer at Earth observation

China Successfully Sends First Gaofen Satellite Into Space

China launches high-definition earth observation satellite

CHIP TECH
Progress in introducing cleaner cook stoves for billions of people worldwide

Odor and environmental concerns of communities living near waste disposal facilities

Hong Kong struggles to combat waste crisis

Hundreds protest China chemical plant: Xinhua




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement